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A B S T R A C T

Constructing task-state large-scale brain networks can enhance our understanding of the organization of brain 
functions during cognitive tasks. The primary goal of brain network partitioning is to cluster functionally ho
mogeneous brain regions. However, a brain region often serves multiple cognitive functions, complicating the 
partitioning process. This study proposes a novel clustering method for partitioning large-scale brain networks 
based on specific cognitive functions, selecting semantic representation as the target cognitive function to 
evaluate the validity of the proposed method. Specifically, we analyzed functional magnetic resonance imaging 
(fMRI) data from 11 subjects, each exposed to 672 concepts, and correlated this with semantic rating data related 
to these concepts. We identified distinct semantic networks based on the concept comprehension task and 
validated the robustness of our network partitioning through multiple methods. We found that the semantic 
networks derived from multidimensional semantic activation clustering exhibit high reliability and cross- 
semantic model consistency (semantic ratings and word embeddings extracted from GPT-2), particularly in 
networks associated with high semantic functions. Moreover, these semantic networks exhibits significant dif
ferences from the resting-state and task-based brain networks obtained using traditional methods. Further 
analysis revealed functional differences between semantic networks, including disparities in their multidimen
sional semantic representation capabilities, differences in the information modalities they rely on to acquire 
semantic information, and varying associations with general cognitive domains. This study introduces a novel 
approach for analyzing brain networks tailored to specific cognitive functions, establishing a standard semantic 
parcellation with seven networks for future research, potentially enriching our understanding of complex 
cognitive processes and their neural bases.

1. Introduction

In recent years, one of the most significant advancements in neuro
science has been the discovery of large-scale brain networks, where 
distant brain regions exhibit synchronized neural activities, collectively 
forming functionally homogeneous networks (Eickhoff et al., 2018; 
Petersen and Sporns, 2015; Power et al., 2010). This discovery has 
substantially enhanced our understanding of the brain’s functional or
ganization (Bressler and Menon, 2010; Pessoa, 2014). The current 
delineation of large-scale brain networks is primarily based on findings 

from resting-state fMRI studies, which identify multiple networks by 
measuring the correlation of neural activities in distant brain regions 
using resting-state functional connectivity (RSFC) patterns (Ji et al., 
2019; Power et al., 2011; Thomas Yeo et al., 2011). The prominence of 
these resting-state networks is such that many studies investigating 
task-state brain representation patterns continue to rely on networks 
defined by resting-state fMRI data (Lin et al., 2018a,2024; Sun et al., 
2024; Zhang et al., 2024). In addition to resting-state networks, another 
popular method for brain network parcellation is based on structural 
information, such as white matter connectivity (Fan et al., 2016) and 
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cortical morphology (Destrieux et al., 2010). These structurally defined 
networks are also widely employed in task-state fMRI research 
(Bruurmijn et al., 2017; Fischer et al., 2021; Li et al., 2019; Schneider 
et al., 2022; Wang et al., 2024). However, in many cognitive neurosci
ence studies, researchers often focus on a specific cognitive function. 
The question they aim to address through brain network analysis is the 
brain-network organization of a specific cognitive function in the brain. 
Network partitions derived from resting-state functional connectivity 
(RSFC) or structural information may not be sufficient for such requires. 
This is because stronger RSFC or structural connectivity between regions 
does not necessarily indicate greater functional homogeneity for the 
target cognitive function, nor does weaker connectivity always correlate 
with increased functional heterogeneity.

One potential solution to the aforementioned issue is to partition 
brain networks based on task fMRI data. Experimental tasks are typically 
designed to examine the influence of specific cognitive functions on 
brain activation, making this approach suitable for investigating the 
brain-network organization of cognitive functions in relation to partic
ular tasks. Studies have found that, under task conditions, brain net
works undergo reorganization compared to the resting state. For 
example, Rolinski et al. (2020) compared the brain network distribution 
under resting state and a language task and found a moderate overlap 
between the networks in these two states, with a notable shift from left 
to bilateral dominance at rest, suggesting a more distributed organiza
tion in resting networks. Similarly, Doucet et al. (2017) observed 
reduced lateralization in language networks at rest. Jackson et al. (2016)
reported enhanced connectivity from the anterior temporal lobe to oc
cipital and frontal cortex regions during semantic tasks, highlighting 
task-specific network expansions. Cole et al. (2021) demonstrated that 
task-state functional connectivity (TSFC) predicts activations across 
various tasks and cortical areas more accurately than RSFC. Moreover, 
some studies have attempted to predict task-state fMRI activations from 
resting-state fMRI data at the individual level using general linear 
models and neural network methods (Cohen et al., 2020; Jones et al., 
2017; Ngo et al., 2022a; Niu et al., 2021; Tavor et al., 2016). These 
studies found that although neural network methods outperform general 
linear models in prediction accuracy, the overall prediction accuracy 
remains relatively low (Cohen et al., 2020; Deco et al., 2015; Jones et al., 
2017). To capture the functional reorganization and dynamic changes of 
brain networks during cognitive tasks, researchers have proposed 
various methods for analyzing the organization of brain networks based 
on task-related BOLD signals, including: clustering algorithms (Salehi 
et al., 2020), machine-learning algorithms (Glasser et al., 2016), and 
meta-analysis (Dockès et al., 2020; Laird et al., 2005; Ngo et al., 2022b; 
Yarkoni et al., 2011). In contrast to employing resting-state or structural 
brain network partition, these methodologies offer more optimized and 
adaptable choices for network analyses in task-based fMRI research 
(Ngo et al., 2019; Yeo et al., 2015).

However, while task-based brain network analysis methods are more 
task-specific, they are still unable to precisely capture the brain-network 
organization associated with target specific cognitive functions. The 
execution of experimental tasks often necessitates the coordination of 
the target cognitive function with various non-target cognitive func
tions, and these functions often jointly influence the neural activity of a 
brain region (Hein and Knight, 2008; Mattheiss et al., 2018). Conven
tional task-based parcellation methods often fail to distinguish between 
neural activities related to target and non-target cognitive components. 
Therefore, these methods are often influenced by both target and 
non-target cognitive functions (as well as potential physiological attri
butes), which prevents them from maximizing the functional homoge
neity of the target cognitive function within the identified networks 
(Kuhnke et al., 2023; Lin et al., 2020; G. Zhang et al., 2023). For 
instance, consider a task where the neural activities of brain regions X, 
Y, and Z are influenced by three cognitive functions: A, B, and C, each 
contributing equally to the neural signals. For function A, X and Y are 
functionally homogeneous but different from Z. For functions B and C, X 

and Y are functionally opposite but similar to Z. If we consider the 
overall activity of these regions during the task, X and Z would be 
grouped into the same network due to their higher overall homogeneity. 
However, if the researcher is only interested in function A, then X should 
be grouped with Y rather than Z, because X and Y are functionally ho
mogeneous regarding function A.

To meet the aforementioned requirements, we propose a method for 
partitioning large-scale brain networks based on specific cognitive 
functions. The core concept involves isolating information related to the 
target cognitive function from neural signals and deconstructing it into 
multiple components or dimensions. Then brain parcels are clustered 
based on their functional attributes across these components or di
mensions to form large-scale brain networks.

In this study, we chose semantic representation function as the target 
cognitive function to evaluate the validity of the proposed method. 
There are three reasons for this choice. First, semantic representation is a 
fundamental and crucial cognitive function that underpins various 
important abilities, including language comprehension and production, 
object recognition and classification, and understanding everyday 
events (Frisby et al., 2023; Kumar, 2021; S. Wang et al., 2024). Second, 
extensive research has identified effective multi-dimensions semantic 
models of semantic representation, such as interpretable semantic 
dimension ratings (Anderson et al., 2017; Fernandino et al., 2015, 2022; 
Tong et al., 2022; Y. Zhang et al., 2023b) and word embeddings from 
computational language models (Caucheteux et al., 2023; Schrimpf 
et al., 2021; A. Y. Wang et al., 2023). Third, studies have found that 
semantic representation is distributed across a wide range of brain re
gions, with functional heterogeneity among these regions (Fernandino 
et al., 2016; Huth et al., 2016, 2012), suggesting the likely presence of 
multiple subnetworks in the brain supporting semantic representation.

Specifically, we analyzed fMRI data from a concept comprehension 
task, in which 11 participants thought about 672 individual concepts. 
We used interpretable semantic dimension ratings to disentangle 
multidimensional semantic-related information from the fMRI data and 
then partitioned the cortical network based on the semantic represen
tation functions of brain regions. We then assessed the reliability of our 
method, and examined the validity of our method by analyzing the 
similarities between semantic-network partitions obtained using 
different semantic models (i.e., interpretable semantic dimension rat
ings and GPT-2) and between semantic-network partitions and brain 
networks obtained using traditional approaches (i.e., resting-state RSFC 
and modularity analysis). Finally, we examined the functional differ
ences between semantic networks in their multidimensional semantic 
representation capabilities, semantic acquisition sources, and associa
tions with general cognitive domains.

2. Methods

Fig. 1 provides an overview of the study design, which encompasses 
four key steps: data processing, semantic network partition, assessing 
quality of semantic network partition, and examination of the cognitive 
functions of the partitioned semantic networks. Each of these compo
nents is discussed in detail below.

2.1. Data processing

To construct the semantic networks, we utilized two recently pub
lished datasets: the fMRI dataset for concept representation with se
mantic feature annotations (CRSF) (S. Wang et al., 2022b) and the six 
semantic dimension database (SSDD) (S. Wang et al., 2023). In this 
subsection, we detail the fundamental characteristics of the two data
sets, outline our processing procedures for each (see Fig. 1a).

2.1.1. The fMRI data from the CRSF
For detailed information on the fMRI portion of the CRSF dataset, 

please refer to Wang et al. (2022b) This dataset initially included 18 
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participants (8 females, mean age 23.83 ± 2.4 SD), though data from 7 
participants were excluded due to incomplete participation (average 
1.43 visits ± 0.73 SD). Our analysis focuses on the 11 right-handed in
dividuals who considered 672 unique concepts from both concrete and 
abstract categories, sourced from the Synonymy Thesaurus published by 
Harbin Institute of Technology (HITST).

During fMRI scanning, participants were instructed to attentively 
read the presented words and consider their related concepts in 
conjunction with the accompanying images. Specifically, at the begin
ning of each run, the instruction "The experiment is about to start; please 
pay attention" was displayed on the screen, followed by a 2-second 
fixation period. Each stimulus was then presented for 3 ss, followed by 
a 2-second fixation period. The fMRI sessions were split into four visits 
for participants sub01–sub05 and six visits for participants sub06
–sub11. Within each scanning session, the 672 words were divided into 
either four sets of 168 words (for sub01–sub05) or six sets of 112 words 
(for sub06–sub11), and distributed across 12 runs. Each participant 
viewed each word six times, each with a different picture. It took two 
runs to complete a single repetition of all 168 or 112 words (i.e., 84 or 56 
words per run).

Data collection employed a 3T GE Discovery MR750 scanner with a 
32-channel phased-array head coil at the Magnetic Resonance Imaging 
Research Center of the Institute of Psychology of the Chinese Academy 
of Sciences (IPCAS). We acquired T1-weighted structural images in 176 
sagittal slices (1.0 mm isotropic voxels) and functional BOLD signals 
using gradient-echo EPI in 42 near-axial slices (3.0 mm isotropic voxels, 
TR 2000 ms, TE 30 ms, flip angle 70◦).

Automated pre-processing of the images was performed using 
fMRIPrep (Esteban et al., 2019), which included initial discarding of the 
first 5 vol of each functional run, slice timing correction, 3-D motion 
correction, and standard space resampling. T1-weighted images 

underwent defacing, manual inspection of cortical segmentations, and 
normalization. Specifically, T1-weighted images were segmented into 
different tissue types; the resulting gray matter probabilistic images 
were coregistered to the mean functional image in the native space, 
resliced to the spatial resolution of functional images, and obtain the 
gray mask of each subject. The forward and inverse deformation fields of 
each subject’s native space to the Montreal Neurological Institute (MNI) 
space were also obtained at this step.

After preprocessing, we estimated the fMRI single-word responses. 
For each participant, we applied a general linear model (GLM) to the 
fMRI data in standard space to obtain word-level neural activation 
patterns. The GLM included onset regressors for each of the 672 words, 
six motion parameters, and a constant regressor for each run, with 
convolution through the canonical hemodynamic response function 
(HRF) and a high-pass filter set at 128 s. For each word, this process 
generated six beta-value images reflecting neural activation patterns. 
Next, for each word, we performed a one-sample t-test on the six beta- 
value images (with a comparison to zero) to obtain the corresponding 
t-value image, which reflects stable word-level neural activation 
pattern. The use of the t-map in this analysis is motivated by the fact 
that, in activation pattern analysis, it is crucial to standardize the acti
vation data for each voxel. A one-sample t-test achieves this standardi
zation by comparing the activation values at each voxel against the null 
hypothesis (zero). Finally, following previous studies (Anderson et al., 
2016; Fu et al., 2023), we only consider voxels in the gray matter mask 
for subsequent analysis.

2.1.2. The semantic ratings from the CRSF and the SSDD
The semantic rating-based method is primarily grounded in the 

multidimensional semantic model developed by Binder et al. (2016). 
Drawing on neuroscience research related to semantics, Binder et al. 

Fig 1. Overview of the study design. The procedure includes four parts: A) Data processing: initial fMRI data was processed using fMRIPrep, and t-value images for 
each concept were obtained using the general linear model. A 59-dimensional semantic ratings for each concept was constructed by incorporating CRSF and SSDD 
datasets. B) Semantic network partition: The t-value image was divided regionally according to 1000 independently identified parcels for each subject and each 
concept. Then, t-value representations of each parcel were mapped to semantic ratings or word embeddings using representational similarity encoding, resulting in a 
1,000 × 59 semantic representation matrix for each subject. After averaging across subjects, the k-means algorithm was applied to create a semantic cortical 
partition. C) Assessing quality of semantic network partition was performed from two perspectives: reliability test and validation test. D) Examination of the cognitive 
functions of the partitioned semantic networks from three perspectives: their multidimensional semantic-representation capabilities, sources of semantic information 
acquisition and involvement in general cognitive domains.
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(2016) proposed a semantic model that encompasses 65 semantic di
mensions across 14 domains, along with guidelines for their assessment. 
Subsequent research has validated the semantic rating-based model’s 
effectiveness in explaining semantic-related behaviors and brain acti
vation patterns (Anderson et al., 2017; Fernandino et al., 2022, 2015; 
Tong et al., 2022; Zhang et al., 2023b). Moreover, the rating-based 
model is known for its high interpretability, which makes it an ideal 
choice for the current study. In this research, we utilized a 59-dimen
sional Chinese semantic ratings derived from two datasets: the CRSF 
dataset and the SSDD dataset.

We direct the reader to Wang et al. (2022b) for details on the se
mantic ratings of the CRSF dataset. The dataset comprised 54 semantic 
features for 672 concepts across 14 domains (vision, somatic, audition, 
gustation, olfaction, motor, spatial, temporal, causal, social, cognition, 
emotion, drive, attention). Each concept was evaluated on a 1–7 scale by 
crowd-sourced experiments involving 30 unique raters per experiment. 
A total of 126 participants (72 females, aged 20–25) contributed, 
completing tasks based on their ability to pass quality assessments. 
These 54 dimensions are derived from the multidimensional semantic 
model proposed by Binder et al. (2016). Eleven of the original 65 fea
tures in Binder’s model were excluded due to high correlations (Pearson 
correlation > 0.8) with other features.

Additionally, our study utilized the subjective rating dataset from the 
SSDD, which includes subjective ratings for 17,940 Chinese words, over 
the computational extension dataset, which contains ratings for over 1.4 
million Chinese and 1.5 million English words. The current study used 
the subjective rating dataset because it showed higher validity than the 
computational extension dataset and includes the semantic ratings of 
672 words used in the CRSF. It focuses on 6 semantic dimensions: vision, 
motor, socialness, emotion, space, and time. Except for the vision 
dimension, the other five dimensions are not rated in the CRSF. Notably, 
emotion ratings range from − 3 to 3 (often termed valance ratings), 
whereas the other dimensions use a 1–7 scale. Following conventions in 
neuroimaging research on emotional semantics (see Arioli et al. (2021)), 
we used absolute values of the emotional ratings to differentiate be
tween valenced and neutral words in neural representations.

Notably, the "Vision" feature was rated in both datasets, showing 
significant overlap and a high correlation between them. Consequently, 
we retained the "Vision" feature from the SSDD dataset and merged the 
semantic ratings from both sources, creating a composite set of 59- 
dimensional semantic ratings for each concept. Each of the 59 di
mensions in this composite rating set has clear and well-defined se
mantic connotations, as detailed in Supplementary Table S1. 
Supplementary Figure S1 illustrates three examples of the semantic 
ratings. As expected, more concrete concepts, such as "Airplane" and 
"Sea," received higher ratings on sensory and motor domains, whereas 
abstract concepts like "Love" were rated higher in abstract domains.

2.2. Semantic network partition

As shown in Fig. 1b, to achieve a large-scale semantic network or
ganization, we utilized a cortical parcellation to sample fMRI data at the 
regional level (Ji et al., 2019). The recently-developed cortical parcel
lation by Schaefer et al. (2018) includes 500 symmetric cortical parcels 
per hemisphere. This parcellation, defined by surface vertices, is 
considered more accurate than previous versions due to the use of a 
Gaussian Markov Random Field (gwMRF) model, which integrates local 
gradient and global similarity approaches. Each parcel varies in size and 
shape, aligning functional and anatomical borders across multiple im
aging modalities. For each subject and each concept, we divided the 
t-value image (detailed in Section 2.1.1) regionally according to 1000 
independently identified parcels. This process resulted in v-dimensional 
t-value representations (where v equals the number of voxels in the 
parcel) for each parcel. We selected a higher-resolution Schaefer atlas 
rather than a lower-resolution version (e.g., 100 or 200 symmetric 
cortical parcels per hemisphere) to more effectively partition voxels 

with distinct semantic information distributions into separate parcels. 
Specifically, voxels that are spatially proximal tend to exhibit functional 
homogeneity; consequently, smaller parcels are likely to demonstrate 
greater internal homogeneity in terms of semantic representation 
functions. In contrast, using a lower-resolution atlas increases the risk 
that voxels with highly heterogeneous semantic representation func
tions are grouped within the same parcel. Therefore, employing a 
higher-resolution Schaefer atlas maximizes the homogeneity of semantic 
representation functions within brain networks.

The v-dimensional t-value representations of each parcel (detailed in 
Section 2.1.1) contains activations triggered by both semantic and non- 
semantic components (such as attention and memory retrieval). To 
eliminate noise and semantically irrelevant information in brain data, 
we mapped v-dimensional t-value representations of each parcel to 59- 
dimensional semantic ratings. This multi-dimensional decoding 
method is commonly used both to remove uninterested information 
from computational language model representations in natural language 
processing (Oota et al., 2024; Toneva et al., 2022) and to isolate brain 
activity related to the specific NLP task from fMRI cognitive signals (Luo 
et al., 2022; Zhang et al., 2023a). For each parcel, we mapped the t-value 
representations to each dimension of the semantic ratings to generate 
predicted semantic rating vectors using representational similarity 
encoding (RSE), as detailed in Section 2.5. Subsequently, for each par
cel, we obtained a 59-dimensional semantic representation, consisting of 
the Pearson correlation coefficients between the actual and predicted 
semantic rating vectors. This procedure was repeated for 1000 parcels, 
resulting in a 1,000 × 59 semantic representation matrix for each sub
ject. A group semantic representation matrix was subsequently created 
by averaging these matrices across all subjects in the cohort.

We then applied the k-means clustering algorithm to segment 1000 
brain parcels into major cortical semantic networks based on the group- 
level semantic representative matrix. The optimal number of clusters, k, 
was determined using multiple methods, consisting of the elbow 
method, silhouette coefficient and cross-subject stability. The elbow 
method assesses the intra-cluster sum of squares (inertia) across 
different k values to identify significant changes in the rate of inertia 
reduction: 

Inertia(k) = log

(
∑n

i=1
min
μj∈Sk

( ‖xi − μj

⃒
⃒|

2
)
)

(1) 

Here, n represents the number of parcels, xi is the i-th parcel, μj is the 
cluster center within the set Sk.

The silhouette coefficient (SC) measures each data point’s similarity 
to others within the same cluster (cohesion) and its dissimilarity to data 
points in the nearest different clusters (separation): 

SC = − log

(
1
n
∑n

i=1

vi − wi

max(wi, vi)

)

(2) 

where wi denotes the average intra-cluster distance for data point i, 
reflecting cluster cohesion, and is computed as: 

wi =
1

|S| − 1
∑

j∈S,j∕=i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑d

k=1

(
xi,k − xj,k

)2

√
√
√
√ (3) 

Here, S represents the cluster containing point i, and the Euclidean 
distance serves as the distance metric. vi represents the average distance 
from data point i to the nearest point in a different cluster Sʹ, capturing 
cluster separation, and is calculated as: 

vi = min
Sʹ∕=S

1
|Sʹ|

∑

j∈Sʹ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑d

k=1

(
xi,k − xj,k

)2

√
√
√
√ (4) 

Here, Sʹ denotes any cluster other than S. In the formula 2, a lower 
silhouette coefficient indicates more effective clustering, reflecting a 
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clearer distinction between clusters.
Cross-subject stability was calculated by averaging the pairwise 

Euclidean distances between the clustering centers derived from each 
subject’s semantic representative matrix for various cluster numbers k. 
Specifically, the mean distance D(k) was determined by aggregating the 
distances between corresponding cluster centers across all pairs of 
subjects, for each k. This aggregation was mathematically represented 
as: 

D(k) =
1

(
N
2

)
∑N− 1

i=1

∑N

j=i+1

1
k
∑k

m=1
‖S(m)

i,k − S(m)

j,k ‖2 (5) 

where S(m)

i,k and S(m)

j,k denote the m-th cluster center of subjects i and j 
respectively, and N is the total number of subjects. This methodological 
approach facilitated the identification of the most stable clustering 
number k, which was characterized by the smallest mean distance across 
subjects, thus reflecting the highest consistency in clustering patterns 
among the subjects.

2.3. Assessing quality of semantic network partition

In the previous section, we constructed semantic network partitions 
using both semantic ratings and word embeddings. In this section, we 
conducted reliability and validation tests on the network partition 
method to assess its stability and scalability (See Fig. 1c).

2.3.1. Reliability test
As shown in Fig. 1c, we assessed the reliability of our network 

partition at both the global and local levels. At the global level, we 
conducted validation analyses employing different clustering algo
rithms, various cortical parcellation methods, and different subject 
sampling subsets. These factors are crucial in determining the final se
mantic network partition. Initially, we explored the effect of various 
clustering methods on network partitioning by re-clustering the se
mantic representation matrix using multiple algorithms, including k- 
means clustering, spectral clustering, hierarchical clustering, and 
Gaussian mixture models. Subsequently, to evaluate the influence of 
cortical parcellations, we utilized the human brainnetome atlas (BN 
atlas) (Fan et al., 2016) and Schaefer’s parcellations (Schaefer et al., 
2018), as outlined in Section 2.2. The BN atlas, comprising 210 cortical 
parcels, offers a detailed, cross-validated network map with anatomical 
and functional connectivity data. Schaefer’s parcellations generated 
parcels ranging from 400 to 1000 to accommodate various applications, 
all of which were included in our analysis. To determine the impact of 
subject variability on network partitioning, we repeatedly selected half 
of the subjects at random to replicate the analysis process. Finally, we 
calculated the Pearson correlation for semantic networks generated by 
different methods to quantify consistency.

At the local level, we implemented several quantitative measures to 
rigorously evaluate the final semantic network partition and validate 
parcel assignments. First, we calculated a network assignment confi
dence score for each parcel to express the certainty of its assignment to a 
particular network (Wang et al., 2015). This confidence score was 
determined by the difference between the assigned network’s correla
tion value and the out-of-network correlation values for a parcel i: 

Ci =

∑
rp i,j

mj
−

∑
rp i,h

mh
(6) 

where Ci is the network assignment confidence score for parcel i (one of 
1000 brain parcels), rp i,j represents the Pearson correlation coefficient 
between the semantic representations of parcel i and another parcel j 
within the same network, mj is the total number of parcels within parcel 
i’s network. rp i,h is the Pearson correlation coefficient between the se
mantic representations of parcel i and parcel h outside parcel i’s 

network, and mh denotes the count of parcels outside parcel i’s network. 
If a parcel’s semantic representation is very similar to that of the other 
parcels in its assigned network, the confidence score will be high, but if it 
is also similar to other networks, the confidence score will be low.

Then, we evaluated inter-subject semantic consistency to gauge the 
consistency of each parcel’s semantic representation across subjects (Ji 
et al., 2019). For each parcel, we calculated the Pearson correlation 
between the semantic representations of one subject and all others, 
resulting in an 11 × 11 matrix (the number of subjects × the number of 
subjects). The mean pairwise similarity score S was obtained by aver
aging the matrix values and used as the inter-subject semantic consis
tency score. This score quantifies the degree of semantic consistency 
among subjects for each parcel. A higher score indicates higher 
inter-subject semantic consistency, whereas a lower score reflects lower 
consistency across subjects.

Once these quality metrics were calculated, each parcel was evalu
ated for reassignment. Specifically, parcels with a confidence score 
below 0 were considered for reassignment. For these parcels, we 
calculated the confidence scores for assignment to each available se
mantic network and reassigned the parcel to the network with the 
highest confidence score. This reassignment process ensured that each 
parcel was assigned to the most appropriate network based on quanti
tative assessments. Except for parcels in network 3, less than 3 % of 
cortical patches in other networks were reallocated.

In Network 3, parcels were not subjected to reassignment. Notably, 
over 70 % of the parcels within this network exhibit confidence scores 
below zero, resulting in an overall negative confidence score for 
Network 3. Two primary factors may account for this negative confi
dence score. First, the homogeneity of parcels within Network 3 is low; 
the application of a hard clustering analysis method (i.e., K-means) 
likely aggregated parcels that were difficult to assign to other categories 
into a single network. Second, regarding semantic representation func
tionality, Network 3 demonstrates weaker semantic representation ca
pabilities, at least within the dataset employed in this study. Although 
some literature supporting embodied cognition has reported semantic 
activations within the sensorimotor network (de Zubicaray et al., 2013), 
the reliability of these findings remains contentious. Recent studies 
utilizing naturalistic paradigms have also found that language models do 
not significantly predict semantic activations in the sensorimotor 
network, whereas the association cortex plays a more stable and reliable 
role in semantic representation (Chen et al., 2024; Huth et al., 2016). 
Furthermore, our results presented in Section 3.3.1 indicate that 
Network 3 possesses weaker—or even nonexistent—semantic repre
sentation functions compared to other networks. Consequently, parcels 
within Network 3 were not reassigned.

2.3.2. Validation test
After conducting reliability tests, we proceeded with validation tests 

by analyzing the similarities between semantic network partitions ob
tained using different semantic models (i.e., semantic ratings and word 
embedding from GPT-2) and between semantic network partitions and 
brain networks obtained using traditional approaches (i.e., resting-state 
RSFC and modularity analysis). Our hypothesis is that the proposed 
method, which constructs brain semantic networks based on multidi
mensional semantic similarity, can more accurately capture the simi
larities and differences in the semantic representational functions of 
brain regions, providing an advantage over traditional methods in par
titioning semantic networks.

To test this hypothesis, we examined the similarities between se
mantic network partitions derived from different semantic models, as 
well as their alignment with brain networks generated using traditional 
methods. We expect that, if the proposed clustering method is effective, 
network partitions derived from the rating-based model should exhibit 
significantly higher similarity to those derived from GPT-2 than to the 
network partitions generated by traditional methods. Furthermore, by 
comparing the similarity and differences between the partitions of 
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semantic networks based on these two semantic models, we can evaluate 
the influence of semantic model choice on network partitioning.

Constructing semantic network partitions using word embed
ding. We used GPT-2 (Radford et al., 2019), one of the most widely 
utilized computational language models, to extract word embeddings 
from text stimuli. GPT-2 is an autoregressive model trained to predict 
the next token based on preceding text, and it has demonstrated strong 
performance on a variety of downstream NLP tasks, such as semantically 
coherent text generation (Li et al., 2023; J. 2024). Furthermore, 
numerous studies have extensively validated the ability of 
GPT-2-extracted word embeddings (semantic representations) to inter
pret and predict neural activity. (Caucheteux et al., 2023; Goldstein 
et al., 2022; Schrimpf et al., 2021; Sun et al., 2020). For this study, we 
used the pre-trained GPT-2 medium model, which has 24 hidden layers, 
each with a hidden representation dimension of 1024, and is publicly 
available on Hugging Face.1 According to previous research (Toneva 
and Wehbe, 2019; Wang et al., 2022a), the middle layers of deep lan
guage models are particularly effective at encoding various linguistic 
features. Therefore, we extract word embeddings from the 11th layer of 
the GPT-2 medium model.

In line with previous studies (Vulić et al., 2020; Y. Zhang et al., 
2023a), we randomly sampled 1000 sentences per target word from the 
Chinese Wikipedia corpus.2 These sentences were then input into the 
model, and we extracted the contextualized word vectors for the target 
words from the 11th layer. The final embedding for each target word 
was obtained by averaging the 1000 contextualized vectors, resulting in 
a 1024-dimensional word embedding. Previous research has shown that 
averaging contextualized word embeddings produces vectors that are 
either competitive with or outperform those generated by static distri
butional semantic models (DSMs) (Schrimpf et al., 2021; Sun et al., 
2020), suggesting that these embeddings capture richer semantic 
information.

We chose this approach rather than directly inputting the target 
word into GPT-2 for word embedding extraction because GPT-2 is a 
context-dependent model, where the same word can have different 
representations in different contexts. Using multiple contextual senten
ces can capture the diversity of the target word in various contexts, 
resulting in a more comprehensive and accurate representation. It has 
been demonstrated that averaging contextual embeddings generates 
vectors that contain more semantic information than those obtained by 
directly inputting the target word (Bommasani et al., 2020; Chersoni 
et al., 2021). Moreover, this choice aligns with the hypothesis that 
context-independent conceptual representations are abstractions 
derived from token exemplar concepts (Yee and Thompson-Schill, 
2016).

After extracting word embedding from GPT-2, we used the proposed 
method to construct semantic network partitions (detailed in Section 
2.2).

Constructing brain network partitions using traditional 
methods. We chose two widely used traditional methods for con
structing brain network partitions in neuroscience studies: the resting- 
state functional connectivity (RSFC) method and the modularity 
approach. For the resting-state RSFC method, we selected the widely 
used Yeo-7 network partition (Thomas Yeo et al., 2011) as the repre
sentative resting-state network. Thomas Yeo et al. (2011) provided 
heuristic labels for these seven networks, commonly referred to in the 
neuroimaging literature as Default, Somatosensory-Motor (SomMot), 
Dorsal Attention (DorsAttn), Salience/Ventral Attention (SalVentAttn), 
Limbic, Executive Control (Cont), and Visual (Vis). While we adopted 
these labels for descriptive convenience, as noted by Thomas Yeo et al., 
these names do not necessarily correspond precisely to the networks’ 

functional roles.
For the modularity approach, following previous studies (Cao et al., 

2014; Godwin et al., 2015; Moraschi et al., 2020; Rubinov and Sporns, 
2011), we constructed cerebral cortex networks using the commonly 
adopted modularity method on the same concept comprehension data
set. We applied Schaefer’s parcellation, dividing the cerebral cortex into 
1000 regions of interest (ROIs), and constructed node-based connec
tivity matrices (1,000 × 1000) for each subject. These matrices were 
then averaged to create a group-level connectivity matrix. We used the 
Louvain method (Blondel et al., 2008) to determine the optimal modu
larity partition, maximizing the quality function (Q) (Rubinov and 
Sporns, 2011) that reflects partition quality, as implemented in the Brain 
Connectivity Toolbox.3 The optimal modularity partition was defined as 
the one with the highest Q value over 1000 iterations.

Assessing the similarity between two semantic network parti
tions. After obtaining the corresponding brain networks, we compared 
the similarity between other brain network partitions and semantic 
brain networks by analyzing the distribution of each semantic network’s 
voxels across networks defined by the other partitions. Taking the Yeo-7 
network as an example, for each semantic network, we first identified 
the voxels within each semantic network’s spatial mask and then 
quantified their overlap with the spatial masks of the Yeo-7 networks. 
The overlap between a semantic network and a particular Yeo-7 network 
was defined as the proportion of overlapping voxels relative to the total 
number of voxels in the semantic network. A higher proportion signifies 
greater similarity between the two networks. For example, if Semantic 
Network 1 contains N voxels in total, and Xvis, Xdef , Xlimvoxels overlap 
with the Visual, Default, and Limbic Yeo-7 networks respectively, the 
proportions are calculated as follows: Xvis/N, Xdef/N and Xlim/N, repre
senting the proportions of Semantic Network 1 associated with the Vi
sual, Default, and Limbic networks, respectively.

Assessing potential biases introduced by resting-state parcella
tions. We utilized randomly parcellated parcels to construct semantic 
brain networks, thereby further demonstrating the stability of the pro
posed semantic networks. Specifically, we employed the region growing 
method (Adams and Bischof, 1994; Lu et al., 2003) for parcellation. 
Based on the predefined number of voxels per parcel, we randomly 
selected 783 seed points as initial region centers. From each seed point, 
we iteratively expanded into the unassigned voxels within their 
six-neighborhood, prioritizing voxels closest to the region center. To 
prevent overlapping regions and control region size, each voxel was 
assigned to only one region, and each region was limited to a maximum 
number of voxels. Any remaining unassigned voxels were allocated to 
the nearest region, followed by overlap checks, thereby completing the 
cortical parcellation. The final parcellation divided the cortical surface 
into 783 parcels, each containing approximately 50 voxels. Subse
quently, we applied our proposed method to map each parcel into the 
semantic space and performed clustering to obtain seven semantic brain 
networks.

Evaluating the stability of the semantic brain networks con
structing using word embedding. We validated the semantic brain 
networks derived from the 11th layer of GPT-2 medium representations 
through three distinct approaches. First, we assessed whether different 
layers within GPT-2 medium could produce relatively stable semantic 
network partitioning results. Specifically, we constructed brain net
works using representations from layers 10, 12, 13, 14, and 15 of GPT-2 
medium and calculated the correlations between these network parti
tionings and the network partitioning obtained from layer 11. Second, 
we examined whether GPT-2 models with varying numbers of parame
ters could generate relatively stable semantic network partitions. We 
utilized representations from GPT-2 Distil (layer 5), GPT-2 Small (layer 
8), and GPT-2 Large (layer 27) to construct brain networks and 

1 https://huggingface.co/uer/gpt2-medium-chinese-cluecorpussmall.
2 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles. 

xml.bz2. 3 http://www.brain-connectivity-toolbox.net.
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computed pairwise correlations with the network partitioning derived 
from GPT-2 medium. Third, we investigated whether word embeddings 
extracted from different corporas could lead to relatively stable semantic 
network partitions. For this analysis, we employed the Xinhua4 and 
Chinese Wikipedia corpus respectively to extract word vectors and 
construct the corresponding brain network partitions.

2.4. Examining the cognitive functions of the partitioned semantic 
networks

In previous analyses, seven brain networks were delineated based on 
the multidimensional semantic-representation functions of various brain 
regions, and the reliability and validity of these partitions were evalu
ated. In this section, we investigated the cognitive functions associated 
with each of the seven semantic networks (See Fig. 1d).

2.4.1. Examining the multidimensional semantic-representation functions 
of the partitioned semantic networks

In this section, we evaluated each semantic network’s capacity to 
represent semantic information across various dimensions. This capacity 
is reflected in the network’s ability to decode semantic information 
pertaining to individual dimensions from its brain activations. Specif
ically, we evaluated how accurately each semantic network’s activta
tions can predict 59-dimensional semantic ratings (detailed in Section 
2.1.2). This method is usually used to reveal the internal information (or 
knowledge) encoded in text-based word vectors generated by different 
language models (Chersoni et al., 2021; Utsumi, 2020). For each se
mantic network, we mapped the t-value representations (detailed in 
Section 2.1.1) to each dimension of semantic ratings to obtain predicted 
semantic ratings using RSE (detailed in Section 2.5). Prediction perfor
mance was evaluated by calculating Pearson correlations between 
actual and predicted semantic rating vectors for each semantic feature. 
A high correlation for a particular semantic feature indicates that the 
network contains rich semantic information for that feature.

2.4.2. Tracing the source of semantic information acquisition in the 
partitioned semantic networks

Based on the dual-coding theory of semantic representation (Bi, 
2021; Paivio, 1990), semantic information is acquired from two primary 
sources: perceptual experiences and linguistic experiences. To investi
gate the origins of semantic information acquisition, we assessed the 
decoding capabilities of specific brain networks’ semantic activations 
using models of different modalities, including language models, visual 
models, and hybrid models. We hypothesize that the greater the simi
larity between the information acquisition sources of a model and those 
of a brain network, the more analogous their semantic representation 
functions will be.

Specifically, following the methodology outlined in Section 2.4.1, we 
mapped the t-value representation of each network and the hidden 
representation of different deep neural network models onto 59-dimen
sional semantic ratings. This enabled us to obtain the 59-dimensional 
semantic representation for each network and each deep neural 
model. We then calculated the Pearson correlation between the semantic 
representation of each network and each deep neural model to deter
mine the semantic correlation coefficient.

To ensure the robustness of our analysis, we selected a diverse range 
of deep neural network models, representing major architectural types 
across each modality: language (e.g., BERT-family, GPT-2 (Zhao et al., 
2019), T5 (Zhang et al., 2021)), visual (e.g., BEiT (Bao et al., 2022), ViT 
(Dosovitskiy, 2020), DEiT (Touvron et al., 2021)), and multi-modal (e. 
g., CLIP (J. Zhang et al., 2023), OFA (P. Wang et al., 2022), ViLT (Kim 
et al., 2021)). For each architectural type, we selected models trained on 
various datasets using different methods. For instance, the BERT-family 

includes BERT (Devlin, 2018), MacBERT (Cui et al., 2021), RoBERTa 
(Cui et al., 2020), ERNIE (Sun et al., 2021) and Roformer (Su et al., 
2024). These models build upon BERT by introducing various en
hancements and modifications to optimize performance for specific 
tasks or scenarios. We did not finetune any of these deep neural network 
models ourselves but leveraged the pretrained models available on 
Huggingface.5 Details of the specific pretrained model checkpoints are 
described in supplementary material. For each semantic network, we 
averaged the semantic correlation coefficients of each model within the 
same architectural type to obtain the final semantic correlation coeffi
cient. A high correlation indicates a strong semantic resemblance be
tween the brain’s semantic network and the deep neural model, 
suggesting that this semantic network acquires information from the 
same modality as the deep neural model.

For deep neural network models across different modalities, we 
employed various methods to extract the hidden layer representations 
for each target word (Chersoni et al., 2021; Zhang et al., 2023a). For 
deep neural language models, we randomly sampled 1000 sentences for 
each target word from the Chinese Wikipedia corpus. We then fed these 
sentences to the models and extracted the vectors from each layer. The 
final embedding for each target word was obtained by averaging the 
1000 contextualized vectors, resulting in a 1024-dimensional word 
embedding. For deep neural visual models, S. Wang et al. (2022b) 
published six different images depicting each word. We fed these six 
images to the models and extracted the vectors from each layer. The 
image representations were obtained by averaging the six vectors from 
the images of the target word. For deep neural multi-modal models, we 
provided both the target word and its six corresponding images as inputs 
and extracted vectors from each layer of the models. Multi-modal rep
resentations were obtained by averaging the six image vectors together 
with the text vector of the target word. Since ViLT and OFA currently 
lack open-source Chinese pre-trained models, we translated the target 
word into English and paired it with six different images. The vectors 
from each layer were then extracted from both ViLT and OFA.

2.4.3. Examining the involvements of the partitioned semantic networks in 
general domains of cognitive functions

Semantic representation functions are intricately connected to 
numerous cognitive domains, resulting in brain regions responsible for 
semantic processing frequently participating in a wide array of cognitive 
activities. In this section, we leveraged the decoding capabilities of the 
large-scale functional neuroimaging database Neurosynth (Yarkoni 
et al., 2011) to investigate the involvement of partitioned semantic 
networks in various cognitive functions. This approach enables us to 
further elucidate the distinct characteristics of different semantic net
works in their roles within cognitive processes.

The Neurosynth Image Decoder6 associates each of 1335 keywords 
with a unique meta-analytic map. These keywords encompass brain 
structures such as the prefrontal cortex, hippocampus, amygdala, and 
thalamus, as well as cognitive functions like working memory, attention, 
language, and emotion. In our study, we inputted each subnetwork of 
the semantic network partition into the decoder. It then calculated 
Pearson correlations between the semantic subnetwork and the meta- 
analytic maps associated with each keyword, subsequently ranking the 
keywords in descending order of their correlation coefficients.

From the ranked list, we retained only keywords relevant to cogni
tion. To reduce redundancy, singular and plural forms of the same word 
(e.g., "language" and "languages") were consolidated. Finally, for each 
subnetwork, the top 10 functionally relevant keywords, based on their 
correlation values, were selected to construct word clouds.

Furthermore, we utilized the Yeo-7 network to examine the 
involvement of partitioned semantic networks within general domains 

4 http://www.xinhuanet.com/whxw.htm.

5 https://huggingface.co/.
6 http://www.neurosynth.org/decode/.
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of cognitive functions. The Yeo-7 network is characterized by well- 
defined cognitive functions. For instance, the Default Mode Network is 
associated with higher-order cognitive processes such as introspective 
thinking, self-referential processing, memory retrieval, and future 
planning. The visual network plays a critical role in both primary and 
higher-level visual processing, including visual perception, image 
recognition, spatial navigation, and the regulation of visual attention. 
Therefore, employing the methodology outlined in Section 2.3.2, which 
involves analyzing the distribution of each semantic network’s voxels 
across the networks defined by the Yeo-7 networks, we can further infer 
the involvement of partitioned semantic networks in broader cognitive 
function domains.

2.5. Representational similarity encoding

To map representations E derived from semantic networks or deep 
neural network models onto 59-dimensional semantic ratings C, we 
utilized the representational similarity encoding method (Anderson 
et al., 2016). This approach, referred to as RSE, calculating the simi
larities between different word representations within E. Subsequently, 
it reconstructs the semantic rating of each word by computing a 
weighted average of the semantic ratings of other words, where the 
weights are determined by the previously calculated similarities. The 
procedures of SEA are outlined below:

Initially, a set of word representations E = {e1, e2, ..., en} is extracted 
from various deep neural network models or semantic networks. For 
each pair of representations 

(
ei, ej

)
, their similarity is quantified using 

the Pearson correlation coefficient (ρ). Consequently, a similarity matrix 
M is formed, where M ∈ Rn×n and Mij = ρ

(
ei, ej

)
.

Subsequently, for semantic networks or deep neural network models, 
we posit that if network-based or model-based representations encode 
the same information as specific semantic feature vector, the similarity 
relation of the network-based or model-based vectors and that of the 
semantic feature vector is the same. We can predict each semantic vector 
by multiplying the above similarity matrix with corresponding semantic 
vector. To mitigate the influence of actual semantic values, we subtract 
the real semantic feature vectors from the predicted vectors to derive the 
predicted semantic feature matrix: 

Cʹ = (M − In)C (7) 

where C ∈ Rn×m represents the real semantic feature vectors, Cʹ ∈ Rn×m 

denotes the predicted semantic feature vectors, and In ∈ Rn×n represents 
a square matrix in which all the elements of the main diagonal are 1, and 
all other elements are 0.

Finally, the Pearson correlation is employed to assess the similarity 
between the predicted and the actual semantic feature vectors in each 
dimension: 

r = ( ρ
(
C(:,1),Cʹ

(:,1)
)
, ρ
(
C(:,2),Cʹ

(:,2)
)
,⋯, ρ

(
C(:,n),Cʹ

(:,n)
)
) (8) 

A higher correlation score for a given dimension of r indicates that 
the corresponding semantic network or deep neural network model 
captures a broader range of information related to that semantic 
dimension.

3 Results

3.1 Semantic network partition

The semantic network partition drived from multi-dimensional se
mantic ratings are presented in Fig. 2. These semantic networks exhibit 
bilateral symmetry across the hemispheres. Supplementary Figure S2 
provides a comprehensive explanation of the cluster selection process, 
specifically outlining the determination of the optimal k value. These 
figures show an elbow point occurring between k=6 and k=9, with k=7 
identified as the optimal choice based on the silhouette coefficient and 
cross-subject stability. Overall, our approach successfully delineated 
seven distinct semantic networks. Among them, five brain networks 
demonstrate strong correspondences with the neural associations of 
specific semantic-related cognitive functions reported in the literature.

Networks 1 and 4 are primarily localized in the ventral, dorsal 
temporal and occipital cortices. These regions are associated with object 
visual recognition and are believed to be involved in the representation 
of visual object semantics (Ludersdorfer et al., 2019; Martin, 2007). 
Network 5 is mainly situated in the lateral frontal and temporal 
cortices, corresponding to classical language areas such as Broca’s and 
Wernicke’s areas. This network is thought to participate in the repre
sentation of semantic information based on linguistic symbol encoding 
(Bi, 2021). Network 6 predominantly includes the medial temporal lobe 
and the ventral and lateral parietal-occipital cortices. These regions are 

Fig 2. Cortical semantic network partition. The cerebral cortex, mapped by multi-dimension semantic ratings, was divided into seven principal seman
tic networks.
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related to spatial navigation and are considered to be involved in spatial 
semantic encoding (Epstein, 2008; Epstein et al., 2017; Lin et al., 2024). 
Network 7 has a widespread distribution. Visual inspection indicates 
significant overlap with the social brain network, including the dorso
lateral prefrontal cortex, temporoparietal junction, anterior superior 
temporal sulcus, and posterior cingulate cortex. These regions are 
believed to be involved in the representation of social semantics (Lin 
et al., 2020, 2019, 2018b; Patel et al., 2021). The remaining two net
works, Networks 2 and 3, exhibit very extensive distributions across 
various brain regions. Although parts of these networks have been 
identified in the literature as participating in semantic representa
tion—for instance, the motor regions within Network 3 have been 
implicated in motor semantics (Carota et al., 2017; Dreyer and Pulver
müller, 2018; Fernandino and Iacoboni, 2010), and the anterior tem
poral lobe (ATL) within Network 2 is considered a semantic hub 

(Holland and Lambon Ralph, 2010; Zhao et al., 2017)—it remains 
challenging to comprehensively associate these networks with specific 
types of semantic representations documented in existing studies.

3.2 Assessing quality of semantic network partition

3.2.1. Reliability test
We first assessed the reliability of our network partition at the global 

level. Fig. 3a illustrates the high consistency of semantic networks 
derived across various subject sampling subsets, clustering algorithms, 
and cortical parcellation methods. As shown Fig. 3a (left), regardless of 
which half of the subjects are selected, the correlation between the ob
tained network partitions is consistently higher than 0.6 (p < 0.000001), 
with the highest correlation reaching 0.76. This result indicates that the 
proposed network partitioning method is not sensitive to variations in 

Fig 3. Reliability test of cortical semantic network partition. A) Pearson correlation of cortical semantic network partitions obtained by utilizing different half- 
split subjects, different clustering algorithms, and distinct cortical parcellations. B) Left: The cortical map featuring network assignment confidence scores, indicating 
the semantic similarity of each parcel to its assigned network. Network 3 has a negative confidence score, which is not shown on the figure. Right: Network-level 
averages of parcel-level confidence scores (including all seven networks). C) Left: The cortical map exhibiting inter-subject semantic consistency, quantifying 
similarity in semantic distribution patterns across subjects for each cortical parcel. Right: Network-level averages of parcel-level inter-subject semantic consistency.
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subject selection. Fig. 3a (middle) demonstrates that the correlation 
between network partitions obtained by different clustering methods is 
significantly higher than 0.6 (p < 0.000001), with the highest correla
tion reaching 0.82. This suggests that the semantic representation ma
trix has a relatively clear clustering structure, allowing different 
clustering algorithms to capture similar patterns. This further illustrates 
that the semantic representation of each parcel (detailed in Section 
2.1.1) effectively reflects the differences in semantic information be
tween parcels, with those in similar brain networks exhibiting more 
similar semantic representations. Furthermore, the higher correlation 
between network partitions created by K-means and GMM may be 
attributed to their similarity in distance measures (Patel and Kushwaha, 
2020). Fig. 3a (right) shows that the correlation between network par
titions created by different cortical parcellations is also higher than 0.6 
(p < 0.000001), with over 80 % of cortical parcellations exhibiting 
correlations above 0.7. This suggests that our method can effectively 
extract the semantic information contained in each parcel, regardless of 
whether the cerebral cortex parcellation is divided according to struc
tural pattern or resting-state function, and regardless of the resolution of 
the parcellation, and then construct a relatively consistent semantic 
network partition. However, the semantic network results derived from 
the BN atlas, which comprises 210 cortical parcels, exhibited slightly 
lower similarity compared to those obtained using higher-resolution 
cortical parcellations. This discrepancy may be attributable to the fac
tors discussed in Section 2.2, wherein utilizing a lower-resolution atlas 
increases the likelihood that voxels with highly heterogeneous semantic 
representation functions are aggregated within the same parcel.

We further evaluated the semantic network partition quantitatively 
at the local level by assessing two metrics for each parcel and network: 
network assignment confidence and inter-subject connectivity consis
tency (referenced in Fig. 3b and c). We observe that the overall network 
assignment confidence scores are relatively low, which may be attrib
uted to three factors. First, the differences in semantic information dis
tribution between networks are not particularly large (as shown in 
Fig. 5). Second, the calculation method is highly stringent. Previous 
studies that used functional connectivity of parcels as representations 
also obtained relatively low network assignment confidence scores (Ji 
et al., 2019). Third, the exceptionally low confidence scores for Network 
2 and Network 3 have significantly lowered the overall average.

The lower confidence score of Network 2 (and similarly Network 3) 
may be attributed to three potential factors: a low signal-to-noise ratio 
(SNR), low inter-subject semantic consistency, and limited semantic 
information functionality. First, Network 2 has a lower SNR of 42, 
compared to an average of 46 across other networks. A Pearson corre
lation analysis confirmed a significant relationship between SNR and 
confidence scores (r = 0.20, p < 0.00001), indicating that lower SNR 
increases noise, thereby reducing confidence scores.

Second, lower inter-subject semantic consistency may introduce 
noise by averaging distinct semantic representations across different 
brain parcels, which could reduce confidence scores. To assess this, we 
calculated the mean similarity of cortex-wide semantic representations 
for each parcel across subjects. A higher inter-subject value indicates 
greater semantic consistency among subjects, whereas a lower value 
reflects greater semantic variability. As shown in Fig. 3c, the inter- 
subject semantic consistency was high, relative to the theoretical mini
mum of 0 (which represents minimum consistency). Network 1 
demonstrated the highest semantic consistency (the highest inter- 
subject value), corresponding to its higher confidence score. In 
contrast, Network 2 and Network 3 showed lower semantic consistency 
(the lowest inter-subject value), consistent with its lower confidence 
score.

Third, Network 2 and Network 3 contains weaker semantic infor
mation functions than other networks. As shown in Fig. 5, semantic 
networks are ranked from top to bottom based on the richness of their 
semantic information, quantified by the average Pearson correlation 
coefficient across all semantic dimensions. The ordering of semantic 

information richness across networks strongly correlates with the 
ordering of mean assignment confidence scores. As seen in Fig. 3c, 
Networks 5 and 1, which have high semantic information functions, also 
have high network assignment confidence scores. Conversely, Network 
2 and 3, with low semantic information functions, has low network 
assignment confidence scores. These findings indicate that networks 
with higher semantic representation functions tend to exhibit greater 
stability in brain network partitioning.

3.2.2. Validation test
Fig. 4 shows that the similarities between semantic-network parti

tions obtained using different semantic models (i.e., interpretable se
mantic ratings and GPT-2), and between semantic-network partitions 
and brain networks obtained using traditional approaches (i.e., resting- 
state RSFC and modularity analysis).

We observe that, compared to the similarity between networks 
defined by the Yeo-7 network and those derived from modularity-based 
mapping, the similarity between networks partitioned using two 
different semantic models is significantly greater. Fig. 4a (middle) il
lustrates that most networks exhibit a clear one-to-one correspondence 
between the partitions derived from the two semantic models, such as 
Network 1, Network 4, Network 5, Network 6, and Network 7. This 
indicates that these networks maintain strong consistency across 
different semantic models, further suggesting that our method demon
strates high cross-model stability. However, Networks 2 and 3 from the 
semantic networks partitioned using semantic ratings exhibit the 
greatest similarity to Network 2 from the semantic networks partitioned 
using GPT-2. These two networks were previously identified as con
taining less semantic functions. This suggests that parcels with weaker 
semantic representations are more susceptible to model-specific in
fluences in our approach, an issue that we discuss in greater detail in the 
Discussion section. Fig. 4b (middle) shows that several networks from 
the semantic-network partitions (i.e., Network 1, Network 4, Network 6) 
exhibit the greatest similarity with Network 1 within the Yeo-7 network. 
Networks 2 and 7 within the semantic-network partitions are most 
similar to Network 7 in the Yeo-7 network. Similarly, Fig. 4c (middle) 
reveals that Networks 1, 4, and 6 from the semantic-network partitions 
are most similar to Network 2 derived from modularity analysis, while 
Networks 2 and 7 from the same partitions are most similar to Network 4 
from modularity analysis. These findings suggest that brain networks 
obtained using traditional approaches (i.e., Yeo-7 and modularity-based 
networks) exhibit low similarity with the networks derived from our 
semantic partitioning method. In summary, the considerable similarity 
between network partitions derived from two highly distinct semantic 
models suggests that the proposed method effectively captures the brain 
network organization patterns specific to semantic representational 
functions and demonstrates robustness across varying semantic models.

It can be noticed from Fig. 4c (right) that the modularity method 
divides the brain into 12 networks, eight of these modules are small, the 
largest of these eight networks accounts for only 0.28 % of the cortical 
voxels. These small modules lack clear biological functional in
terpretations. Additionally, the four main networks identified through 
modularity closely resemble the hierarchical structure observed in 
resting-state data (Margulies et al., 2016), effectively separating primary 
sensorimotor and transmodal regions, as well as distinct regions within 
the primary sensorimotor areas (e.g., somatomotor, auditory, and visual 
cortex). However, modularity-based partitioning fails to capture the 
task-related semantic functions that influence network division. This 
limitation likely arises because modularity analysis primarily relies on 
the network’s topological structure and is not designed to disentangle 
multidimensional, semantic-related information from fMRI data. As a 
result, it partitions the cortical network based solely on the topological 
features of brain regions, rather than accounting for the semantic rep
resentation functions associated with those regions.

Supplementary Figure S4 represents the cortical semantic network 
partition, consisting of seven major networks, derived from Schaefer’s 
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parcellation and the random parcellation. Visual inspection reveals that 
the spatial patterns of the two semantic network partitions are largely 
similar, particularly for networks with high semantic functions. The 
majority of networks (Networks 1, 2, 5, 6, and 7) exhibit substantial 
spatial overlap. This consistency underscores the stability of our derived 
parcellation approach.

As illustrated in Supplementary Figs. S6 and S7, the brain network 
partitions obtained from different layers and models exhibited high 
correlations, indicating consistent clustering across various GPT-2 con
figurations. Additionally, Supplementary Figure S8 demonstrates that 
brain network partitions derived from different corporas showed 

substantial overlap in specific brain regions with high semantic func
tions, such as Networks 1, 4, 5, and 6. These findings collectively suggest 
that the proposed clustering method yields relatively stable semantic 
network results across different layers, model sizes, and corpora.

3.3. Cognitive functions of the partitioned semantic networks

3.3.1. The multidimensional semantic-representation functions of 
partitioned semantic networks

Fig. 5 displays the multidimensional semantic-representation func
tions of the partitioned semantic networks. Concerning sensorimotor 

Fig 4. Validation test of cortical semantic network partition. A) Semantic networks mapped by semantic ratings (left) and word embeddings extracted from GPT- 
2 (right), was divided into seven principal semantic networks. Middle: The similarity between the left and right cerebral networks. Network Lx refers to the x-th 
semantic network mapped by semantic ratings (left), while Network Rx denotes the x-th semantic network mapped by GPT-2 (right). Connections between Network 
Lx and Network Rx indicate the proportion of voxels in Network Lx that are also present in Network Rx. Thicker connections signify a greater proportion of Network 
Rx within Network Lx, thereby suggesting higher similarity between the corresponding brain networks. For example, the connection between Network L1 and 
Network R1 denotes the proportion of voxels in Network L1 that belong to Network R1. A red connection highlights that Network R1 has the highest voxel overlap 
with Network L1, indicating that these two networks exhibit the highest degree of similarity. B) Left: Semantic networks mapped by semantic ratings. Middle: The 
similarity between the left and right cerebral networks. Right: Resting-state network (Yoe-7 network). C) Left: Semantic networks mapped by semantic ratings. 
Middle: The similarity between the left and right cerebral networks. Right: Cortical networks, mapped using the modularity method, was divided into twelve 
networks. In the analysis of brain network similarity, we focused exclusively on four principal networks: Networks 2, 4, 8, and 11. These four networks collectively 
encompass 98.44 % of the cortical voxels across the entire cerebral cortex. In contrast, the largest of the remaining eight networks accounts for only 0.28 % of the 
cortical voxels.
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dimensions, sensory information is encoded in the brain more than other 
motor information. For instance, the correlation of face and body di
mensions is significantly higher than that of other motor dimensions, 
such as heavy and motion, which is potentially relevant to humans’ 
ability to rapidly detect and recognize faces. In terms of non- 
sensorimotor dimensions, most spatial (e.g., near, toward, away, and 
path) and temporal (e.g., number, time, and duration) dimensions are 
significantly lower among nearly all attributes. Conversely, human, self, 
and cognition dimensions in social and cognitive domains achieve 
higher correlations. Additionally, we observe that some negative emo
tions (e.g., sad, angry, and disgusted) are better predicted by some 
networks than positive ones.

3.3.2. The source of semantic information acquisition in the partitioned 
semantic network

The premise of using deep neural network models to explore the 
information acquisition of semantic networks is based on the observa
tion that different deep neural network models exhibit distinct distri
butions of semantic information. As illustrated in Fig. 6a, models within 
the same modality demonstrate consistent semantic information distri
bution, whereas models across different modalities displayed significant 
variation. In sensorimotor domains, language models show a higher 
correlation in the visual domain and performed comparably in other 
domains such as somatic, audition, gustation, and olfaction. Visual 
models, on the other hand, exhibit similar performance in visual, so
matic, gustation, and olfaction domains but show relatively low corre
lation in the audition domain. In non-sensorimotor domains, language 
models perform comparable in social, cognition, and emotion domains, 

Fig 5. Multidimensional semantic-representation functions of the partitioned semantic networks. Pearson correlations between the estimated semantic 
features and the original data for each network. Semantic networks are ranked from top to bottom based on the richness of their semantic information, which is 
quantified by the average Pearson correlation coefficient across all semantic dimensions. A high correlation for a particular semantic feature indicates that the 
network contains rich semantic information for that feature.

Fig 6. The source of semantic information acquisition in the partitioned semantic networks. A) Pearson correlations per domain between the estimated 
semantic features and the original data for each model. B) Semantic correlation between each semantic network and neural model indicated their similarity in 
semantic information. A high correlation indicates a strong semantic resemblance between the brain’s semantic network and the deep neural model, suggesting that 
this semantic network acquires information from the same modality as the deep neural model.
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while visual models had low correlation in the emotion domain. This 
finding supports prior research indicating that text information signifi
cantly contributes to the affective content of lexical items (Lenci et al., 
2018; Recchia and Louwerse, 2015). The information distribution of 
multi-modal models integrates the patterns observed in both language 

and visual models. These results suggest that models from different 
modalities exhibit distinct patterns of semantic information distribution.

Fig. 6b displays the correlation between network partitions and deep 
neural network models. Both language and visual models show high 
correlation in areas related to Network 1, Network 2, Network 5, and 

Fig 7. Involvements of the partitioned semantic networks in general domains of cognitive functions. A) The proportion of voxels within each semantic 
network that belong to each of the Yeo-7 networks. B) Key functional terms associated with each cortical semantic network.
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Network 7. However, language models exhibit lower correlations in 
Network 4 and Network 6. These findings imply that networks like 
Network 1, Network 2, Network 5, and Network 7 obtain semantic 
knowledge through both language and visual experiences, whereas 
Network 4 and Network 6 primarily rely on visual inputs. Additionally, 
multi-modal models, particularly single-stream models such as ViLT and 
OFA, demonstrate the highest correlations across most networks. Yet, in 
Network 4 and Network 6, visual models show correlations comparable 
to those of multi-modal models, also indicating that these networks may 
rely less on language experiences for semantic knowledge acquisition.

3.3.3 The involvements of the partitioned semantic networks in general 
domains of cognitive functions

Fig. 7 shows the involvements of the partitioned semantic networks 
in general domains of cognitive functions. It can be noticed from Fig. 7a 
that voxels within each semantic network intersect with multiple 
resting-state networks defined in the Yeo-7 framework. For instance, the 
voxels in Network 1 predominantly overlap with the visual (53.1 %) and 
dorsal attention (34.4 %) networks in the Yeo-7 framework. Similarly, 
voxels in Network 5 primarily overlap with the default (35.8 %) and 
executive control (33.6 %) networks. This finding suggests that the 
brain’s internal network patterns undergo dynamic reorganization to 
varying degrees during task execution compared to the resting state. The 
subsequent paragraphs will individually examine the involvement of 
each partitioned semantic network within the general domains of 
cognitive functions, drawing on the findings presented in Figs. 5 and 7.

Network 1 is highly specialized in visual processing, with a focus on 
recognizing faces, objects, and other visual stimuli. The significant 
presence of voxels in the Visual and DorsAttn networks underscores its 
critical role in visual perception and attention. Key functional terms for 
this network include objects, visual, face, and motion viewing. Addi
tionally, Network 1 contains semantic information related to faces, so
cial cues, self-referential processing, and body recognition. This suggests 
its involvement in both visual element recognition and social percep
tion, contributing to self-awareness within visual contexts.

Network 2 is involved in higher-order cognitive functions, encom
passing default mode processing, tactile perception, referential thinking, 
and theory of mind. The predominance of voxels in the Default and Cont 
networks highlights its role in introspection, social cognition, and ex
ecutive functions. Key functional terms include default, tactile, and 
theory of mind. The semantic information associated with human in
teractions, social dynamics, and cognitive activities emphasizes 
Network 2′ s importance in understanding social behavior and mental 
states.

Network 3 is primarily associated with somatosensory and motor 
functions. The high concentration of voxels in the SomMot and SalVe
nAttn networks underscores its role in processing sensory and motor 
information. Key functional terms include somatosensory, motor, and 
pain. The absence of semantic information suggests that Network 3 is 
specialized for direct sensorimotor tasks rather than higher-order se
mantic processing.

Network 4 is dedicated to visual and spatial processing, with a strong 
emphasis on object and face recognition, spatial awareness, and 
perceptual attention. The predominance of voxels in the Visual and 
DorsAttn networks highlights its role in visual perception and spatial 
orientation. Key functional terms include visual, objects, and spatial. 
The semantic information, including space, face, body, and landmarks, 
indicates Network 4′ s role in integrating visual stimuli with spatial and 
bodily awareness, essential for navigating and interacting with the 
environment.

Network 5 is specialized in language processing, including syntax, 
semantics, and phonology. Its voxels are mainly found in the Default and 
Cont networks, indicating its role in complex cognitive functions such as 
language comprehension and executive control. Key functional terms 
include sentence, language, and semantic. The semantic information 
related to humans, cognition, social interactions, and patterns suggests 

that Network 5 is crucial for understanding and producing language, as 
well as processing social and cognitive patterns.

Network 6 is involved in navigation, episodic memory, and spatial 
processing. The distribution of voxels across the Visual, DorsAttn, and 
Default networks indicates its role in integrating visual information with 
memory and attentional processes. Key functional terms include navi
gation, episodic memory, and place. The semantic information, 
including space, landmarks, scenes, and large objects, highlights 
Network 6′ s function in spatial navigation and memory retrieval, 
essential for orienting oneself in the environment.

Network 7 is primarily associated with theory of mind, mentalizing, 
and social cognition. The presence of voxels in the Default, Visual, and 
Cont networks suggests its role in understanding others’ mental states, 
beliefs, and intentions. Key functional terms include theory of mind, 
beliefs, and mental states. The semantic information related to social 
interactions, human cognition, vision, color, and patterns indicates that 
this network integrates cognitive and visual information to facilitate 
social understanding and interpersonal communication.

4 Discussion

We propose a novel method for constructing large-scale brain net
works based on specific cognitive functions and evaluate it using fMRI 
data from a concept comprehension task. We demonstrate the method’s 
reliability and cross-semantic model stability, revealing significant dif
ferences between network partitions obtained using the proposed 
method and traditional brain network partitions (such as those based on 
resting-state RSFC and modularity analysis). Further analysis indicates 
that the different semantic networks we partitioned exhibit systematic 
differences in terms of multidimensional semantic representation, 
sources of semantic acquisition, and their associations with general 
cognitive domains. Additionally, the strength of semantic representation 
functions is correlated with the stability of brain regions within the se
mantic network partitions.

We find that the cortical semantic network partition aligns with prior 
work on semantic representation to a certain extent. Network 1 and 
Network 4 show a high degree of overlap with the regions of significant 
activation identified in several fMRI studies investigating concept 
comprehension using image stimuli (Connolly et al., 2012; Devereux 
et al., 2013; Fu et al., 2023). Both extend from the lateral and medial 
fusiform areas to the lateral occipital cortex, the ventrolateral inferior 
temporal gyrus, the dorsolateral middle temporal gyrus, and the inferior 
parietal lobule. These regions encode high-order visual and semantic 
structures. Additionally, multiple fMRI studies on pure language tasks 
(using word stimuli and natural discourse stimuli) have found that the 
inferior frontal gyrus, middle frontal gyrus, and posterior superior 
temporal sulcus, which are sensitive to various semantic dimensions (i. 
e., motor, vision, space, social) (Fernandino et al., 2016; Lin et al., 
2024), significantly overlap with Network 5.

In addition, we find that multiple brain networks converge near the 
left angular gyrus, while no similar phenomenon is found in the right 
angular gyrus. These findings suggest that the left angular gyrus con
tains diverse and rich semantic information, consistent with previous 
studies (Lin et al., 2024). These studies have found that neural correlates 
of different semantic dimensions are primarily concentrated near the 
angular gyrus. According to the research by Xu et al. (2016), the angular 
gyrus is located at the intersection of the multimodal experiential se
mantic system and the language support semantic system, serving as a 
critical hub that facilitates communication between these two systems. 
Therefore, the present study provides further evidence that the angular 
gyrus may serve as a central region for semantic representation.

Furthermore, we find that almost all semantic networks represent a 
variety of semantic information, not just one kind (Fig. 5). Most net
works can effectively represent social-related semantic dimensions (i.e., 
social, human, communication, self, cognition). The networks that 
contain more social-related information also contain relatively more 
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sensorimotor-related information. These findings support the perspec
tive of Binder et al. (2009) that the general semantic network consists of 
convergence zones representing multi-modal sensory-motor semantics. 
Binder and Desai (2011) proposed that nearly all parts of the general 
semantic network are involved in social cognition, and the engagement 
of these areas in both social and nonsocial tasks reflect a common pro
cess: the retrieval of conceptual knowledge abstracted from 
sensory-motor experience. Supporting this, Fernandino et al. (2016)
found that certain core regions of the general semantic network are 
sensitive to all major types of sensory-motor semantic attributes. The 
results of the current study, combined with those of Fernandino et al. 
(2016), provide consistent evidence supporting the theory proposed by 
Binder and Desai (2011).

Moreover, we find that several non-sensorimotor semantic di
mensions, including near, toward, away, number, time, benefit, and 
needs, are not represented by most semantic networks. We first rule out 
the possibility that the stimulus words lacked this semantic information. 
Statistical analysis revealed that a significant proportion of words with 
high scores in these dimensions are present, with 52 % of words scoring 
above 3 in the benefit dimension and 32 % in the needs dimension. 
Several potential reasons for this absence are considered. The first 
reason could be that word-level stimuli are insufficient to evoke certain 
semantic dimensions in subjects. Lin et al. (2024) found that 
semantic-dimension effects were more pronounced in widespread brain 
areas during natural narrative listening compared to word comprehen
sion tasks. This suggests that contextual semantic information in natural 
and sequential language processes plays a significant role. Reviews on 
affective neuroimaging using naturalistic stimuli, such as movies and 
stories, highlight that these complex stimuli elicit strong, multidimen
sional brain responses (Saarimäki, 2021). The second reason could be 
that these semantic dimensions lack neural reality. Although this cannot 
be determined definitively at present, future research can employ the 
proposed method to screen the semantic dimensions suggested by 
Binder et al. (2016) to further explore the fundamental semantic di
mensions in the human brain. The third reason could be the prolonged 
scanning sessions, which may have caused negative emotions in the 
subjects, making it difficult for them to comprehend the meanings of 
certain stimulus words.

In this paper, we present two significant methodological contribu
tions. First, we introduce a novel approach for constructing large-scale 
brain networks based on specific cognitive functions. The proposed 
method is generalizable to other task domains, provided that the target 
cognitive function can be decomposed into multiple dimensions, each 
with neural representational validity. Under these conditions, the 
method allows for the extraction of relevant dimensions from brain 
signals derived from parcels and the subsequent clustering of these di
mensions to construct corresponding brain networks. Based on the 
existing literature (Binder et al., 2016; Fernandino et al., 2022; Lin et al., 
2024; Tong et al., 2022), semantic representations are exemplars of such 
multidimensional representations. Other types of representations, such 
as visual representations, also exhibit multidimensionality and are 
compatible with the approach proposed in this study. However, in 
contrast to the whole-brain analysis method employed in the present 
work, visual functions may have more distinct and localized neural 
bases (Cox and Savoy, 2003; Ganis et al., 2004). Consequently, it may be 
more effective to first identify the brain regions implicated in the visual 
system and subsequently partition these regions into smaller sub
networks for more targeted analysis. Furthermore, the proposed method 
can be integrated with dynamic functional network approaches to 
investigate how information on the dynamic changes in target cognitive 
functions influences brain network reorganization. Specifically, 
task-induced brain activations can first be segmented into distinct stages 
using dynamic functional network approaches. Subsequently, the pro
posed method can be applied to the brain activations within each stage 
to obtain brain network partitions based on the multidimensional rep
resentations of the target cognitive functions.

Second, to evaluate the semantic similarity between computational 
models and the human brain (detailed in Section 2.4.2), we introduce a 
novel model-brain alignment method. First, we map the representations 
of computational models and brain activity into a shared semantic 
space, defined by 59 semantic dimensions. Subsequently, we compute 
the Pearson correlation between the representations of the computa
tional models and brain activity within this common space. Previous 
encoding methods directly map hidden representations onto brain 
activation patterns and assess the mapping performance using the 
Pearson correlation coefficient (Schrimpf et al., 2021; Wang et al., 
2023). However, both brain and model representations encompass 
various types of information, including semantic content, grammatical 
structure, low-level features, and noise. As a result, a high correlation 
does not indicate that the two representations share similar semantic 
information. The proposed model-brain alignment method filters out 
noise and semantically irrelevant information, providing a more accu
rate reflection of the similarity between two sources of semantic infor
mation. Thus, researchers can use the proposed method to further 
investigate the semantic similarity between human brain activity and 
computational models.

We applied the proposed method to construct a semantic brain 
network partition using fMRI data from a concept comprehension task. 
This network partition can be employed to interpret region-level se
mantic-related functions through fMRI, EEG, or MEG data. Furthermore, 
some studies focused on semantics concentrate only on specific brain 
regions, and incorporating the entire brain into the analysis can signif
icantly increase both computational time and complexity. Our semantic 
network partition serves as a set of masks that preserve semantically 
relevant large-scale network units, thereby enhancing computational 
efficiency. Moreover, several studies on model-brain alignment have 
performed ROI-level analyses using resting-state network partitions 
(Sun et al., 2024; Zhang et al., 2023b). In comparison to resting-state 
network partitions, our proposed partition not only enables re
searchers to exclude semantically irrelevant brain regions but also 
provides a deeper understanding of the semantic functions within each 
network. Researchers can select the appropriate semantic network based 
on their specific research objectives.

Then, we discussed the potential impacts of non-semantic task- 
related components on the proposed method. A considerable number of 
recent studies have employed multi-dimensional semantic decoding (or 
encoding) methods to investigate the neural correlates of semantic 
representations in the human brain, many of which utilize experimental 
paradigms without any contrast conditions (Caucheteux et al., 2023; 
Fernandino et al., 2022; Huth et al., 2016; Sun et al., 2020; Tong et al., 
2022; Wang et al., 2024, 2022b; Zhang et al., 2023a, 2023b; Zhang et al., 
2024). For non-semantic components such as attention and memory 
retrieval, which are difficult to explicitly quantify, these studies face 
challenges in achieving strict control. However, researchers in the field 
of semantic representation generally hold an optimistic attitude towards 
the reliability of multidimensional semantic decoding analysis. Ac
cording to our understanding, the methodological consideration is that 
multidimensional semantic decoding analysis should be much less sen
sitive to confounding by non-semantic components compared to tradi
tional univariate analysis. Although the activation maps of words (i.e., 
the t-value images detailed in Section 2.1.1) represents activations 
triggered by both semantic and non-semantic components (such as 
attention and memory retrieval), multidimensional semantic decoding 
analysis only extracts information associated with the variations of se
mantic dimensions from them to reflect semantic representation. More 
importantly, multi-dimensional semantic decoding analysis integrates 
neural correlates across numerous semantic dimensions to reflect the 
semantic representations, and the effects of a single non-semantic 
cognitive component are unlikely to systematically confound with 
multiple semantic dimensions. Therefore, current research generally 
employs multidimensional semantic decoding as a method to reflect 
semantic brain representation in no-contrast experimental paradigms.
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The present study has several limitations. First, although the fMRI 
data we used is currently the largest open-source dataset available for 
concept comprehension, the number of participants is still smaller 
compared to resting-state datasets. To encompass a broad spectrum of 
concepts, the dataset developed by Wang et al. (2023) necessitated 
extended data collection periods for each participant, resulting in a 
smaller overall participant pool. Future research will seek to validate the 
applicability of our methodology using datasets with larger participant 
cohorts. Second, although our experiments demonstrate that the pro
posed method exhibits high stability across different models, the 
delineation of brain networks is still somewhat influenced by the model, 
especially when partitioning brain regions associated with weaker target 
cognitive functions. This influence can be reduced by first defining the 
brain areas related to the target cognitive functions and then subdivid
ing these regions into smaller networks. Third, for the same target 
cognitive function, datasets from different tasks can influence the 
resulting brain network partitions. Although it is generally accepted that 
the semantic representation functions of brain regions (semantic mem
ory) remain relatively stable across various tasks, the activation induced 
by semantic representations depends on specific stimuli and task de
mands. Therefore, the choice of stimuli and tasks influence both the type 
and extent of semantic activation. Fourth, we only delineate the cortical 
semantic partition. Previous studies have found that semantic process
ing primarily involves widely distributed cortical regions (Binder et al., 
2009). However, recent studies have identified that some sub-cortical 
regions (e.g., the cerebellum, thalamus, and caudate nucleus) also 
contribute to verbal semantic comprehension (Cocquyt et al., 2019; 
Turker et al., 2023). Therefore, delineating sub-cortical semantic par
titions will further clarify the semantic organization of sub-cortical 
structures.

5 Conclusions

We developed a method for constructing brain networks based on the 
homogeneity and heterogeneity of brain regions in specific cognitive 
functions, and demonstrated the reliability and validity of the method 
through semantic-network partitioning. Our findings indicate that our 
method can reliably partition semantic networks, and its results are 
distinctly different from those of traditional brain network parcellation. 
The results of brain semantic network parcellation exhibit high stability 
and cross-semantic model consistency in brain regions representing se
mantic information. Different brain networks show systematic differ
ences in their semantic-related functions. Our study provides a method 
for brain network parcellation in functional neuroimaging studies 
focusing on a specific type of cognitive function. In addition, our results 
also shed light on the organization of semantic functions in human 
brain.
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