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A B S T R A C T

Existing studies demonstrate that comprehenders can predict semantic information during language compre
hension. Most evidence comes from a highly constraining context and it is less investigated that whether in
dividuals predict following semantic information in a less constraining context. In the present study, we 
investigated semantic prediction when reading minimal adjective-noun phrases using electroencephalography 
(EEG) combined with representational similarity analysis (RSA). Native Chinese Mandarin comprehenders were 
presented with animate-constraining or inanimate-constraining adjectives, followed by animate-congruent or 
animate-incongruent nouns. EEG amplitude analysis revealed an N400 for incongruent conditions. Critically, we 
quantified the similarity between patterns of neural activity, and animate-constraining adjectives revealed 
greater similarity than inanimate-constraining adjectives before the presentation of the nouns. This pre-noun 
similarity effect suggests pre-activation of animacy-related semantic information of nouns, and provides evi
dence for the prediction of semantic features of upcoming words, even in minimal phrase contexts.

1. Introduction

Probabilistic prediction has been proposed as a crucial computa
tional principle for language comprehension (Federmeier, 2007; Huet
tig, 2015; Kuperberg & Jaeger, 2016; Pickering & Gambi, 2018; 
Pulvermüller & Grisoni, 2020). An increasing array of studies has 
illustrated that individuals are capable of predicting linguistic elements 
at multiple levels of representation, including semantic (Altmann & 
Kamide, 1999; Federmeier & Kutas, 1999; Lau et al., 2013; Wang et al., 
2018, 2020), phonological (DeLong et al., 2005; Li et al., 2022; Vissers 
et al., 2006), orthographic (Kim & Lai, 2012; Laszlo & Federmeier, 
2009), and morphosyntactic (Dikker et al., 2009, 2010; Van Berkum 
et al., 2005). Predominantly, such investigations, particularly those on 
downstream word-form representations, focus on contexts that rela
tively strongly constrain specific words. A less investigated issue is 
whether predictions can be effectively made in minimal contexts with 
weak constraints on word prediction. Revealing that predictions can be 
made under these conditions would underscore the robustness of pre
dictive processing in language comprehension, indicating that in
dividuals can still engage predictive mechanisms even in sparse 

contexts. Our study seeks to explore this by investigating the prediction 
of semantic properties in phrasal adjective-noun combinations through 
the use of electroencephalography (EEG) and representational similarity 
analysis (RSA). Moreover, while previous research has focused on se
mantic context effects that develop throughout a sentence, our study 
specifically examined prediction on the basis of cues that were relatively 
local or adjacent.

Early evidence for semantic prediction comes from anticipatory eye 
movements towards objects that are predictable from context, before 
hearing their names (Altmann & Kamide, 1999; Kamide et al., 2003). 
For instance, in a visual world task, Kamide et al. (2003) manipulated 
the agent of an action and reported that when the preceding context was 
“the man will ride …”, listeners predictively looked at “motorbike” more 
than “carousel” before the presentation of the following nouns. The 
findings suggest that comprehenders use world knowledge about plau
sible actions by agents to predict semantic information about plausible 
actions. Similarly, predictable words are read faster (Ehrlich & Rayner, 
1981) and processed more easily, as indicated by reduced neural signals, 
most commonly observed as a reduction in the N400 ERP component. In 
a seminal ERP (event-related potential) study by Federmeier and Kutas 
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(1999), participants were asked to read sentence pairs such as, “They 
wanted to make the hotel look more like a tropical resort. So along the 
driveway, they planted rows of …” The subsequent word could be a 
predictable word (palms), an unpredictable but semantically related 
word (pines), or an unpredictable word from a different semantic cate
gory (tulips). The study revealed that semantically related but unpre
dictable words (pines) triggered smaller N400 brain responses compared 
to completely unpredictable words from an unrelated category (tulips). 
This variation in the N400 response, which depended on the cloze 
probability rather than sentence plausibility, indicates pre-activation of 
subsequent words, not merely the integration of the word into the 
context. More recently, studies have identified prestimulus predictive 
brain activity (Grisoni et al., 2016, 2017, 2021; León-Cabrera et al., 
2017; see Pulvermüller & Grisoni, 2020, for a review). These findings 
show that contexts with strong constraints can elicit brain activity before 
the expected words are presented, and that the magnitude of this activity 
correlates with word predictability (see Grisoni et al. 2021).

Further evidence supporting semantic prediction comes from 
representational similarity analysis (RSA, Kriegeskorte et al., 2008), 
which involves analysing patterns of neural activity for similarities. RSA 
operates on the assumption that similar items can elicit similar neural 
patterns. In a study utilizing RSA, Hubbard and Federmeier (2021)
quantified the neural activity similarity between predictable target 
words and the preceding words within the same sentence. They hy
pothesized that if features of the final word are pre-activated, its neural 
representation is likely to emerge during the processing of the pre-final 
word, leading to a higher similarity between these pre-final and final 
words when the final word is highly expected. Their findings confirmed 
this hypothesis. In a more recent research, Wang et al. (2020) applied 
RSA to identify neural patterns associated with predicting the animacy 
features of forthcoming nouns, based on the constraints imposed by 
preceding verbs. The study posited that nouns with animate features 
would exhibit greater neural similarity than those with inanimate fea
tures because animate objects typically share more semantic charac
teristics. The key issue was whether this similarity effect would emerge 
before the nouns were actually encountered. The results showed a 
higher neural similarity for contexts that constrained animate nouns 
compared to those constraining inanimate nouns, prior to the appear
ance of the nouns. This pre-noun similarity effect was considered to 
reflect the pre-activation of upcoming nouns, although caution is needed 
to exclude the possibility that this effect merely reflects the similarity of 
the prior sentence context.

Much of the research reviewed above has focused on predictive 
processing in (highly constraining) sentence contexts, and the typical 
manipulation is to vary the predictability of the final word (or the very 
final) of a sentence. In these context, comprehenders gradually develop 
a prediction for the last word as more and more prior words accumulate. 
It remains uncertain about how individuals predict in minimal contexts 
where prediction is only generated based on immediate and sparse cues. 
Fruchter et al. (2015) used magnetoencephalography to study the pre
diction in adjective–noun phrases, and focused the preactivation of 
specific nouns triggered by preceding adjectives. They observed an in
crease in activity within the left middle temporal gyrus when partici
pants were presented with highly predictive adjectives—those that 
strongly constrain the subsequent noun. This research underscores the 
capability of certain adjectives to generate the prediction of specific 
nouns. A recent study by Huang et al. (2023) explored such coarse- 
grained semantic prediction using classifier-noun phrases. In Mandarin 
Chinese, classifiers constrain animacy of the subsequent nouns. Huang 
et al. found that neural activity patterns following classifiers that con
strained animate nouns were more similar than those classifiers con
straining inanimate nouns, suggesting the preactivation of coarse- 
grained animacy features of the nouns by classifiers.

Rather than focusing on the preactivation of particular lexical items, 
in the present study, we employed adjective-noun phrases to explore the 
prediction of coarse-grained semantic features, and adopted the 

animacy constraints of adjectives to following nouns. Compared with 
Chinese classifiers as investigated by Huang et al. (2023), the adjective- 
noun phrases we used in the present study impose even fewer specific 
constraints than classifier-noun structures. For example, a noun 
following “one human classifier” (“一位”) usually refers to a person (e.g., 
“teacher” or “doctor”), and one following “one animal classifier” (“一 
头”) indicates a large animal (e.g., “cow” or “elephant”). In contrast, the 
adjective “strong” may modify nouns referring to both people (like 
“athlete”) and animals (like “lion”), thus offering broader and less spe
cific constraints. The structure of adjective-noun phrases, which has 
been widely used to study semantic integration processes (e.g., Barber & 
Carreiras, 2005; Hagoort, 2003; Kochari et al., 2021), provides a unique 
contribution for understanding how comprehenders process linguistic 
information. Typically, semantic inconsistencies in adjective-noun 
phrases elicit N400 effects, indicating neural responses to semantic 
incongruency (Barber & Carreiras, 2005; Hagoort, 2003), whereas 
grammatical gender mismatches trigger P600 effects (Loerts et al., 
2013).

The present study aims to test whether semantic animacy features 
can be anticipated in contexts with minimal constraints. We recorded 
ERP data as participants were presented with adjective-noun phrases, 
focusing on whether the limited constraints provided by adjectives can 
generate predictions about the broader semantic features associated 
with the animacy of forthcoming nouns. Although the mapping between 
adjectives and nouns can be very arbitrary so that adjectives can modify 
a large number of different nouns, some adjectives are unambiguous in 
specifying animacy features of nouns, therefore constraining the ani
macy of following nouns. Some adjectives modify animate nouns only 
(e.g., brave, friendly) whereas some adjectives modify inanimate nouns 
(e.g., heavy, durable). In the study, we included animate-constraining 
and inanimate-constraining adjectives and both types of adjectives 
were matched well in terms of semantic and lexical similarity. We 
manipulated the similarity between subsequent nouns so that animate 
nouns are more semantically similar than inanimate nouns. We exam
ined the similarity of brain activity patterns between items. If compre
henders predict the animacy of upcoming nouns, we should be able to 
observe the neural similarity effect, critically before the onset of 
following nouns.

2. Method

2.1. Participants

Thirty-seven native speakers of Mandarin Chinese (25 females, Mage 
= 21.4) from Beijing participated in the ERP experiment. The sample 
size was determined by recent EEG/MEG RSA studies of language pre
diction (Huang et al., 2023; Hubbard & Federmeier, 2021; Wang et al., 
2018). All participants were right-handed, with normal or corrected-to- 
normal vision, and had no history of language disorders. Participants 
provided informed consent and were compensated 100 RMB for their 
participation. EEG data from five participants were excluded from the 
data analysis due to the high percentage of rejected trials (more than 30 
%) after data preprocessing; thus, thirty-two participants were included 
in the ERP and RSA analyses. The study was approved by the Institu
tional Review Board of the Institute of Psychology, Chinese Academy of 
Sciences.

2.2. Materials and design

Adjective-noun phrases were used as stimuli in the task. Adjectives 
varied in whether they constrained for an animate noun (animate-con
straining, e.g., “brave”) or an inanimate noun (inanimate-constraining, 
e.g., “durable”). To select stimuli, we first began with a large set of 
adjectives that did not constrain strongly for a specific upcoming noun. 
To establish the animacy constraints of adjectives, we retrieved five 
nouns that had the highest co-occurrence following each adjective from 
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the corpus (Xun et al., 2016). An adjective was classified as animate- 
constraining if more than 50 % of its top five co-occurring nouns were 
animate; if not, it was classified as inanimate-constraining. Using this 
approach, a total of 140 adjectives were selected, half of which were 
animate-constraining adjectives, and the other half were inanimate- 
constraining adjectives. Each of the 140 adjectives was combined with 
a noun either a confirmed or violated the adjective’s animacy constraint, 
rendering the congruent or incongruent conditions, to form 280 
adjective-noun phrases in total. The crossing of adjective animacy 
constraint (animate- vs. inanimate- constraining adjective) and 
adjective-noun animacy congruency (congruent vs. incongruent) 
generated the four conditions. The objective was to explore whether 
participants could use the animacy information constrained by the ad
jectives to predict the nouns that followed, and assess the influence of 

semantic congruency on language comprehension.
To establish the constraint of the 140 adjectives, we have assessed 

the cloze probability of the adjectives using the cloze test. A group of 21 
Chinese native speakers who did not take part in the EEG experiment 
were presented with adjectives and were asked to continue with the first 
word that came to mind (Taylor, 1953). Constraint was measured as the 
proportion of participants who gave the most frequent word. Overall, 
the cloze probability of the adjectives was low (27.2 %), indicating that 
adjectives used in our study do not produce specific word predictions. 
The cloze probability was slightly higher for inanimate-constraining 
classifiers (30.3 %) compared to animate-constraining classifiers 
(24.1 %), and this difference did not reach significance (p = 0.057). 
Besides, these adjectives can constrain animacy of subsequent nouns as 
expected (probability of animate nouns following animate-constraining 

Fig. 1. A. Semantic similarity R values for adjectives and nouns. B. Demonstration of the procedure in a trial. C. Schematic illustration of RSA.
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adjectives: 95.0 %, probability of inanimate nouns following inanimate- 
constraining adjectives: 97.1 %), p = 0.334.

In addition, we conducted a semantic plausibility rating for all 
phrases used in the study. A total of 16 participants rated the plausibility 
of each phrase on a 7-point scale (1 = semantically implausible, 7 =
semantically plausible). As expected, congruent phrases were rated 
highly plausible (M = 6.39), while incongruent phrases were rated as 
highly implausible (M = 1.86). The semantic plausibility ratings for 
animate-congruent and inanimate-congruent phrases were closely 
matched (animate-congruent vs. inanimate-congruent: 6.37 vs. 6.40; t 
= -0.48, p = 0.640). However, animate-incongruent phrases were rated 
as less plausible than inanimate-incongruent phrases (animate-incon
gruent vs. inanimate-incongruent: 1.73 vs. 1.99; t = -2.45, p = 0.027).

2.3. Matching semantic similarity and lexical properties between animate- 
vs. inanimate- constraining adjectives

To ensure that the differences observed in the similarity of neural 
activity patterns between animate and inanimate conditions in adjec
tives come from the prediction of subsequent nouns, we verified that the 
two types of adjectives matched in terms of semantic and other lexical 
properties. To quantify the semantic similarity between word pairs 
among animate vs. inanimate- constraining adjectives, we used HowNet, 
an online database that calculates the interconceptual and interattribute 
relationships of Chinese lexicons (Dong et al., 2010). Semantic similarity 
values for all possible adjective phrases were measured via a path-based 
approach by Wu and Palmer (1994). These pairwise Wu–Palmer se
mantic similarity values in a 140 × 140 matrix are presented in Fig. 1A. 
The mean semantic similarity values for the animate- vs. inanimate- 
constraining adjectives were matched (t = 1.03, p = 0.303). We also 
performed statistical analysis on character complexity (measured by 
stroke numbers of characters) and word frequency measured by the 
Modern Chinese Word Frequency Dictionary (Beijing Language Insti
tute, 1986) associated with the animate- vs. inanimate- constraining 
adjectives, and character complexity (t = 0.143, p = 0.886) and word 
frequency (t = -0.788, p = 0.432) were matched between the two types 
of adjectives.

2.4. Quantifying semantic similarity and lexical properties between 
animate vs. inanimate nouns

The experimental hypothesis rested on the assumption that animate 
nouns would be more semantically similar to each other than inanimate 
nouns. We used the same approach as described above to examine the 
difference in semantic similarity between the two groups of nouns. As 
shown in Fig. 1A, the mean semantic similarity within the animate 
group was greater than that within the inanimate group (t = 3.986, p <
0.001). Moreover, it is important to confirm that any differences in 
neural similarity produced by predicted animate and inanimate nouns 
were not generated by differences in similarity of lexical properties. 
Statistical analysis showed that character complexity and word fre
quency were matched between animate vs. inanimate nouns (stroke 
count: t = 0.415, p = 0.428; word frequency: t = -0.796, p = 0.135).

2.5. Procedure

The experiment was conducted using E-Prime software. The experi
mental procedure is illustrated in Fig. 1B. Participants were instructed 
that they would be presented with an adjective and a noun on the 
computer screen. Participants were instructed to judge the semantic 
plausibility of adjective-noun combinations by pressing keyboard but
tons. On each trial, participants sequentially viewed a fixation cross 
(500 ms), a blank screen (500 ms), a display of an adjective (500 ms), a 
blank screen (500 ms), a display of a noun (500 ms), and a question mark 
“?” which would disappear once participants responded. Eight practice 
trials before 280 experimental trials were presented in seven 

experimental blocks and separated by a short break. The experimental 
task lasted 40 min.

2.6. EEG recordings and preprocessing

EEG signals were collected from 64 electrodes secured in an elastic 
cap and recorded with Neuroscan software. A vertical electrooculogram 
(VEOG) was taken via two electrodes above and below the left eye. A 
horizontal electrooculogram (HEOG) was recorded via two electrodes 
on the left and right external cantus. The left mastoid electrode was used 
as a reference. The EEG data were rereferenced to the average of both 
mastoids. All electrode impedances were kept below 8 kΩ. EEG signals 
were recorded with a bandpass filter between 0.05 and 70 Hz and 
sampled at 1,000 Hz. The EEG data were segmented into 1,700 ms 
epochs, which included a 200 ms prestimulus baseline, a 500 ms ad
jective display, a 500 ms interval and a 500 ms noun display. The 
MATLAB EEGLAB kit was used to preprocess the EEG data. The raw data 
were filtered with a high-pass cutoff point of 0.1 Hz and a low-pass 
cutoff point of 30 Hz. Independent component analysis (ICA) using the 
infomax ICA algorithm (Bell & Sejnowski, 1994) was used to remove 
artefacts from the segmented data. The ICLabel plug-in (Pion-Tonachini 
et al., 2019) of EEGLAB was utilized to assess the likelihood that an 
independent component was noisy. Components with a probability 
greater than 90 % were not identified as EEG data and were removed by 
the ICLabel plug-in, resulting in an average removal of one component 
per participant. Epochs with amplitudes greater than ± 90 μV 
(approximately 9.6 % of all epochs) and trials with incorrect responses 
(3.1 % of all trials: animate-congruent: 2.7 %, animate-incongruent: 1.7 
%, inanimate-congruent: 4.5 %, inanimate-incongruent: 3.6 %) were 
excluded from the analyses.

2.7. EEG amplitude analyses

Mean amplitude analyses for EEG signals after noun presentation 
were conducted to investigate the semantically incongruent effect 
evoked by the incongruence between adjectives and nouns. We expected 
an N400 effect evoked by the incongruency of the adjective-noun 
phrase, which has been frequently reported in previous studies 
(Federmeier & Kutas, 1999; Kutas & Federmeier, 2000; Zhang et al., 
2012; Zhou et al., 2010). Based on previous comparable studies, nine 
electrodes from frontal-central areas (Fz, F1, F2, FCz, FC1, FC2, Cz, C1, 
and C2) were selected as spatial regions of interest (ROIs). and the time 
window of 300–500 ms was selected based on visual inspection for N400 
effects. The time window of 300–500 ms, which corresponds to the 
typical latency range of the N400, was selected based on visual in
spection to capture the N400 effects. Mean amplitudes on this time 
window were entered into a 2 × 2 repeated measures ANOVA with the 
factors the animacy of adjectives (animate- vs. inanimate-constraining), 
congruency (congruent vs. incongruent).

2.8. Representational similarity analysis

For RSA analysis, following previous studies (He et al., 2022; Wang 
et al., 2023), we performed temporal-spatial RSA. The analysis pro
cedure is illustrated in Fig. 1C. We defined a 30 ms time window (15 
sampling points) with a 2 ms step size (1 sampling point) and applied a 
sliding window approach to segment EEG and extract EEG data for each 
trial, participant, and condition. For each participant, the voltage 
waveforms within each time window from each channel for each trial 
were concatenated, producing a single vector of voltage values 
capturing both spatial and temporal variations in neural activity. The 
similarity between pairs of trials was quantified using Pearson correla
tion (r) between the voltage vectors of two trials, resulting in a trial-by- 
trial correlation matrix for each time window. To analyze these 
matrices, we excluded the diagonal (representing self-similarity) and the 
upper triangle (as the matrix is symmetric), averaging the values in the 

J. Li et al.                                                                                                                                                                                                                                         



Brain and Language 263 (2025) 105546

5

lower triangle to compute the mean similarity for each time window, 
participant, and condition. To visualize differences between conditions, 
we calculated the grand-average similarity values by averaging across 
participants for each time window and condition. To statistically test the 
differences in similarity between animate- and inanimate-constraining 
adjectives, we conducted a cluster-based permutation test (Maris and 
Oostenveld, 2007). During this test, condition labels were randomly 
shuffled within each time window for all participants. Paired-sample t- 
tests were performed for each time window, and adjacent time windows 
with significant t-values (p < 0.05) were considered as clusters. Every 
permutation test may generate multiple clusters, and we summed the 
maximum t-values of multiple clusters as cluster-level statistic. This 
procedure was repeated 10,000 times to generate a null distribution of 
cluster statistics. A significant effect was identified if the observed 
cluster t-value from the actual data exceeded the 95th percentile of this 
null distribution.

To assess whether the semantic similarity of adjectives is explanatory 
for the observed pre-noun RSA effect, we conducted an additional 
analysis. Specifically, we computed a Spearman’s rho correlation be
tween the semantic similarity matrix of adjectives and the EEG repre
sentational similarity matrix. The analysis procedure is illustrated in 
Fig. 2. If the semantic similarity of adjectives contribute to any pre-noun 
RSA effect, we should observe the correlation between adjective simi
larity and pre-noun EEG similarity. First, we quantified the pairwise 
semantic similarity of adjectives, creating a 140 × 140 matrix repre
senting all adjective pairs. This semantic similarity matrix was the same 
across participants and time windows. Then, we constructed single- 
participant neural similarity matrix: For each participant and time 
window (a given time window has 30 ms), we concatenated the wave
forms across all channels for each trial, producing a single vector of 
voltage values that captured both spatial and temporal variations. We 
then computed Pearson correlations between these vectors for all pairs 
of trials, generating a neural similarity matrix for each participant and 
for a given time window. Note since the remaining trials of each 
participant after data preprocessing were different, the ERP similarity 
matrix was subject-individualized and established based on the 
remaining trials of each participant. Subsequently, we compared the 
semantic similarity matrix to the single-participant ERP similarity ma
trix at a given time window. we conducted independent-sample t-tests 
on the correlations across all time windows, to determine whether the 
mean Spearman rho was significantly greater than zero (false discovery 
rate correction to p-values was applied).

3. Results1

3.1. N400 effect of adjective-noun congruency

The ERPs from nine representative electrodes were averaged for each 

of the four conditions. Fig. 3A shows the grand average ERPs for the four 
conditions, and there was a prominent negative wave within the 
300–500 ms time frame, identified as the N400 component elicited by 
noun stimuli based on its polarity, latency, and scalp distribution. 
ANOVAs were conducted on the mean amplitude of nouns within the 
300–500 ms time window, with the factors animacy of adjectives and 
congruency. The main effect of congruency was significant (F(1,31) =
16.55, p < 0.001), reflecting that the incongruent condition (− 3.26 μV) 
elicited a larger negativity than the congruent condition (− 2.76 μV). The 
main effect of animacy was not significant (F(1,31) = 1.74, p = 0.196). 
The two-factor interaction was significant (F(1,31) = 4.65, p = 0.039). 
Following the interaction, separate analyses were conducted for each 
animate condition. For the animate-constraining condition, the incon
gruent phrases elicited larger negativity than the congruent ones 
(animate-incongruent vs. animate-congruent: − 3.51 μV vs. − 2.52 μV, t 
= -4.33, p < 0.001), whereas for the inanimate-constraining condition, 
there was no significant difference between the congruent and incon
gruent phrases, although the incongruent phrases showed the trend of 
larger negativity (− 3.01 μV vs. − 2.69 μV, t = -1.50, p = 0.144).

3.2. Representation similarity analysis

Grand average similarity waveforms over time are displayed in 
Fig. 3B for animate- vs. inanimate- constraining adjectives. Statistical 
analyses revealed that during the presentation of adjectives (− 1000 ms– 
− 500 ms), there was no greater neural similarity for animate- 
constraining adjectives than for inanimate-constraining adjectives. The 
neural similarity within the animate-constraining condition was greater 
than that within the inanimate-constraining condition, from − 480– 
− 414 ms, − 302– − 246 ms, and − 136– − 92 ms before the onset of the 
noun. Statistical analyses confirmed that the greater neural similarity for 
the animate-constraining condition was observed before noun onset, 
relative to neural similarity within the inanimate-constraining condition 
in the time windows above (cluster-based permutation test: ps < 0.001), 
reflecting the preactivation of animacy features associated with the 
upcoming nouns. Moreover, we conducted an additional analysis to 
assess whether the semantic similarity of adjectives is explanatory for 
the observed pre-noun RSA effect. The results show that there was no 
correlation during the entire − 500 to 0 ms time window (ps > 0.05). 
This finding confirms that adjective similarity does not explain the 
observed RSA effect.

4. Discussion

The present study investigated how individuals predict in minimal 
contexts where the prediction is generated based only on the immediate 
preceding word. In adjective-noun phrases, adjectives were varied in 
animacy constraints (animate-constraining or inanimate-constraining) 
and were followed by animacy-congruent, or animacy-incongruent 
nouns. A larger N400 was observed for the incongruent condition 
compared to the congruent one. The N400 effect was significant for 
animate-constraining adjectives but did not reach conventional signifi
cance for inanimate-constraining adjectives, although a clear trend in 
the expected direction was observed. Critically, the RSA results revealed 
that the similarity among patterns of neural activity following the 
animate-constraining adjectives initiated to be greater than that 
following the inanimate-constraining adjectives before the presentation 
of nouns, which suggests that comprehenders can use the constraints of 
adjectives to set expectations about the animacy feature of nouns that 
follows the adjectives.

As discussed in the introduction, previous research has primarily 
focused on the preactivation of specific lexical items. For instance, Wang 
et al. (2018) demonstrated that participants are capable of making 
specific lexical predictions when comprehending sentences. For 
instance, in paired sentences like “In the crib there is a sleeping…” and 
“In the hospital there is a newborn…”, the predictable target word 

1 In the present study, we collected response latencies, but they are not a 
primary focus of the analysis. In the study, participants were instructed to delay 
their responses until a response signal (a question mark) appeared immediately 
after the offset of the nouns. Upon seeing the response signal, participants 
pressed a button to judge the semantic plausibility of the phrase as quickly as 
possible. Response latencies were measured from the onset of the response 
signal rather than the onset of the nouns. This delayed response procedure was 
implemented to minimize EEG motion artifacts caused by button presses. 
However, by the time the response signal was presented, the cognitive processes 
of interest—such as lexical access, semantic integration, and prediction—were 
likely completed. Consequently, the response latencies primarily reflect more 
peripheral factors, such as decision-making and response execution, rather than 
the core linguistic processes under investigation. Given these considerations, we 
are cautious in interpreting the response latency data (Inanimate congruent: 
375 ms; Inanimate incongruent: 332 ms; Animate congruent: 341 ms; Animate 
incongruent: 338 ms) and we emphasize the primary focus on the neural results 
in the present study.
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“baby” elicited greater neural pattern similarity compared to non-paired 
sentences such as “On Valentine’s day, he sent his girlfriend a bouquet of 
red…”. This increased RSA similarity in neural activity was observed 
when participants could predict words in sentences that were closely 
related. The study highlighted the use of highly constraining sentences 
that facilitated predictions of specific target words. However, in 
everyday language use, most contexts do not tightly constrain a specific 
lexical item but are more likely to specify broader semantic features. It is 
therefore crucial, from a theoretical perspective, to address whether 
comprehenders are capable of predicting broader semantic information 
about upcoming words that extends beyond individual lexical items.

Moreover, most previous studies have focused on the prediction in 
large-scale contexts. For example, in Wang et al. (2020), stimuli con
sisted of three-sentence scenarios, where the first two sentences estab
lished a discourse context, and the final sentence introduced a 
pronominal subject referring back to a previously mentioned protago
nist, followed by a critical verb that constrains either an animate or 
inanimate noun. The level of discourse constraint varied, with some 
sentences having strong lexical constraints and others being more vague 
(low constraint). In this context, animacy features and lexical con
straints of the nouns could be shaped by the full discourse context, which 
is a broader context than the immediate preceding adjective in our 
study. In contrast, our study focused on minimal adjective-noun con
texts, with the goal of investigating whether comprehenders make im
mediate and time-sensitive predictions based solely on the preceding 
adjective. We tested the pre-activation of animacy-related semantic 
features that are triggered by adjectives in this minimal context. Our 
study demonstrates that neural activity patterns following animate- 
constraining adjectives are more similar than those following 
inanimate-constraining adjectives, and critically this neural similarity 
effect was detected before the presentation of the pre-noun. This finding 
supports the notion of preactivation of coarse-grained semantic features, 
distinguishing between upcoming animate and inanimate entities. This 
finding extended previous effects of prediction which develops with the 
incremental processing of the preceding context, rather than being 
solely reliant on immediate verbs. By contrast, our study minimized 

contextual influence by focusing solely on adjective-noun combinations. 
Our findings indicate that prediction can indeed occur based on the 
immediate lexical context alone.

Could be the semantic similarity of adjectives explanatory for the 
observed pre-noun RSA effect here? We think it is very unlikely. If se
mantic similarity differences between animate- and inanimate- 
constraining adjectives were driving the effect, we would expect dif
ferences in neural similarity during the presentation of adjectives 
(− 1000 ms to − 500 ms). However, as reported above, our statistical 
analyses revealed that there was no greater neural similarity for 
animate-constraining adjectives than for inanimate-constraining adjec
tives during this time window. The neural similarity effect was not 
observed during the presentation of the adjectives themselves but 
emerged only after the offset of adjectives, ruling out the possibility that 
adjective similarity explains the effects. Additionally, we conducted an 
additional analysis to directly assess whether the semantic similarity of 
adjectives contribute to the observed pre-noun RSA effect. Specifically, 
we computed a Spearman’s rho correlation between the semantic sim
ilarity matrix of adjectives and the EEG representational similarity 
matrix. Across the entire predictive time window (− 500 ms to 0 ms), no 
significant correlations were observed. This finding confirms that dif
ferences in adjective semantic similarity do not explain the observed 
RSA effect. These results suggest that the effect is not a byproduct of 
processing the adjectives themselves but instead reflects genuine 
anticipatory cognitive processes related to animacy-based predictions of 
the upcoming noun.

Our findings provide insights into when comprehenders begin to 
predict the meaning of upcoming words in a limited adjective-noun 
context. In our study, we observed the pre-activation of coarse-grained 
animacy-related semantic features approximately 500 ms after the 
onset of the preceding adjectives. This time course is about 200 ms 
earlier than the typical onset of semantic pre-activation observed in 
sentence or discourse contexts in previous RSA studies (Hubbard & 
Federmeier, 2021; Wang, Kuperberg, et al., 2018; Wang et al., 2020; 
Wang et al., 2023). These studies suggest that comprehenders begin 
generating semantic predictions roughly 300 ms after the onset of the 

Fig. 2. Representational similarity between the ERP matrix and the semantic similarity matrix. For each participant, we used Pearson correlation to separately 
compute their adjective semantic similarity matrix and EEG representational similarity. Subsequently, we performed Spearman’s rho correlation between the ad
jective semantic similarity matrix and the EEG similarity matrix for each time window (e.g., the intervals − 500 ms to − 470 ms and − 498 ms to − 468 ms represent 
the time spans used in the analysis), generating a time series of rho values for the − 500 to 0 ms interval. Because we used a 30 ms sliding time window, there was 
insufficient data after the − 30 to 0 ms window. To resolve this, we padded the data with 28 ms (14 time points) of zeros after the segment’s end, enabling the 30 ms 
window to slide continuously within the − 500 to 0 ms time range for analysis. A one-sample t-test was conducted on the rho values across participants for each time 
window. Finally, FDR correction was applied for multiple comparisons, and the results showed no significant correlated time windows after correction (ps > 0.05).
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pre-target word in more complex sentence contexts. The later onset of 
pre-activation in the present study may be attributed to the more limited 
context, with only the preceding adjective (rather than a full sentence) 
guiding prediction. This suggests that when the context is more limited, 
the brain perhaps requires more time to initiate semantic predictions. 
Regarding the duration of the effect, previous RSA studies have typically 
reported transient effects with one time window—lasting ~ 100 ms (e. 
g., Wang, Kuperberg, et al., 2018; Wang et al., 2020; Wang et al., 2023) 
or ~ 200 ms (Huang et al., 2023). In contrast, the present study iden
tified three time windows, each lasting around 50 ms. However, we do 
not interpret these time windows as reflecting multiple cognitive pro
cesses. Instead, they likely represent the temporal dynamics of a single 
cognitive process—the pre-activation of animacy-related semantic fea
tures—captured across different moments in time. The variability in 
these time windows may be attributable to multiple factors, such as 
individual differences in processing speed, fluctuations in neural re
sponses across trials and participants, or the sensitivity of our RSA 
analysis in detecting subtle shifts in neural similarity over time.

The present study manipulated semantic congruency between ad
jectives and the nouns that followed, categorizing the nouns as either 
congruent or incongruent with the preceding adjectives. Adjective-noun 
incongruency generated larger N400 effects, which is consistent with 

prior research, reflecting the difficulty in semantic integration when the 
expected features suggested by the adjective do not match with the 
actual features of the noun. These findings align with existing literature 
that establishes the N400 component as a marker of lexical-semantic 
processing difficulty, particularly when encountering semantic anoma
lies or incongruities within a linguistic context (e.g., Federmeier & 
Kutas, 1999; Kutas & Federmeier, 2000; Zhang et al., 2012; Zhou et al., 
2010). Interestingly, this incongruency effect only emerged for animate- 
constraining adjectives, but did not reach conventional significance for 
inanimate-constraining adjectives, although a clear trend in the ex
pected direction was observed. This finding is in line with similar find
ings from Huang et al. (2023) that semantic incongruence elicited N400 
effects, mainly with animate-constraining classifiers. One possible 
reason for the discrepancy of the incongruence effect between animate 
and inanimate-constraining conditions is that animate adjectives impose 
stronger constraints on animacy expectations compared to inanimate 
adjectives. However, this possibility is less likely given the animacy 
constraint was almost the same between animate- and inanimate- 
constraining conditions as measured by the cloze probability test. 
Another potential explanation is that the semantic plausibility of phrases 
was not well matched across conditions. The semantic plausibility rat
ings show that while animate-congruent and inanimate-congruent 

Fig. 3. ERP and RSA results. A. The average ERP waveforms from fronto-central electrodes (Fz, F1, F2, FCz, FC1, FC2, Cz, C1, C2) are shown for four conditions: 
animate-congruent (solid red line), animate-incongruent (dashed red line), inanimate-congruent (solid blue line), and inanimate-incongruent (dashed blue line). 
Compared to the congruent conditions, the incongruent conditions elicit larger N400 in the time window of 300 ms to 500 ms, as revealed by larger negativity for the 
incongruent condition (dashed line) compared to the congruent condition (solid line). B. Pre-noun RSA results. It shows similarity values of animate-constraining 
condition (red line) and inanimate condition (blue line) before the onset of nouns. The similarity between patterns of neural activity following animate- 
constraining condition was greater than following inanimate-constraining condition around − 480– − 414 ms, − 302– − 246 ms, and − 136– − 92 ms before the 
onset of nouns. Standard errors are indicated with shading. The significant time window is indicated by the red horizontal bar.
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phrases were well matched in terms of plausibility, animate-incongruent 
phrases were rated as less plausible than inanimate-incongruent phrases 
(1.73 vs. 1.99). The less pronounced N400 effect observed for 
inanimate-incongruent phrases may be due to the fact that these phrases 
were not sufficiently incongruent. In other words, the discrepancy in 
N400 effects between animate and inanimate constraining conditions 
might be attributable to the mismatch in semantic plausibility between 
the animate and inanimate incongruent conditions. Future studies 
should aim to better match this factor to ensure more robust 
comparisons.

This study’s focus on minimal contexts, specifically adjective-noun 
combinations, highlights how adjectives alone can trigger anticipatory 
cognitive processes. The finding that animacy-constraining adjectives 
facilitate the prediction of noun animacy without the support of exten
sive contextual cues underline the important role of adjectives as pre
dictive cues in language prediction. This research extends beyond the 
findings regarding the predictions based on classifiers (Huang et al., 
2023). In Chinese, the roles of adjectives and classifiers in conveying 
semantic information, including animacy, are distinct. Adjectives, 
typically describing qualities or states, contrast with classifiers, which 
categorize and quantify nouns. While classifiers provide a direct and 
explicit indication of categories, including animacy, adjectives 
constraint animacy less. This distinction is critical for understanding 
predictive processing in language, as it relates to how comprehenders 
utilize various linguistic cues to form expectations about forthcoming 
information.

In summary, we provide neural evidence for the prediction of coarse- 
grained animacy-related semantic features driven by isolated Chinese 
adjectives, revealing that the predictive processing occurs in minimal 
and immediate contexts.

CRediT authorship contribution statement

Jingxiao Li: Writing – review & editing, Writing – original draft, 
Visualization, Software, Methodology, Investigation, Formal analysis, 
Conceptualization. Mingdong Li: Writing – original draft, Methodology, 
Formal analysis, Conceptualization. Wei Zhou: Writing – review & 
editing, Writing – original draft, Supervision, Resources, Project 
administration, Investigation, Data curation, Conceptualization. 
Qingqing Qu: Writing – review & editing, Writing – original draft, Su
pervision, Resources, Project administration, Investigation, Formal 
analysis, Data curation, Conceptualization.

Funding

This work was supported by the National Natural Science Foundation 
of China (No. 32171058 and No. 62061136001), Youth Innovation 
Promotion Association (Chinese Academy of Sciences), Youth Elite 
Scientist Sponsorship Program (No. YESS20200138, China Association 
for Science and Technology), and the Scientific Foundation of Institute 
of Psychology (No. E2CX3625CX, Chinese Academy of Sciences) to 
Qingqing Qu and the Cooperation Project with Chinese Institute for 
Brain Research, Beijing (No. 2021-NKX-XM-05) to Wei Zhou. This work 
was also supported by the Ministry of Education Humanities and Social 
Sciences Research Project (24YJCZH468).

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

References

Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting 
the domain of subsequent reference. Cognition, 73(3), 247–264. https://doi.org/ 
10.1016/S0010-0277(99)00059-1

Barber, H., & Carreiras, M. (2005). Grammatical Gender and Number Agreement in 
Spanish: An ERP Comparison. Journal of Cognitive Neuroscience, 17(1), 137–153. 
https://doi.org/10.1162/0898929052880101

Beijing Language Institute. (1986). Modern Chinese Frequency Dictionary (in Chinese). 
Beijing: Beijing Language Institute press. 

Bell, A. J., & Sejnowski, T. J. (1994). A Non-linear Information Maximisation Algorithm 
that Performs Blind Separation. Neural Information Processing Systems. https://api. 
semanticscholar.org/CorpusID:14295333.

DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation 
during language comprehension inferred from electrical brain activity. Nature 
Neuroscience, 8(8), 1117–1121. https://doi.org/10.1038/nn1504

Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkänen, L. (2010). Early Occipital 
Sensitivity to Syntactic Category Is Based on Form Typicality. Psychological Science, 
21(5), 629–634. https://doi.org/10.1177/0956797610367751

Dikker, S., Rabagliati, H., & Pylkkänen, L. (2009). Sensitivity to syntax in visual cortex. 
Cognition, 110(3), 293–321. https://doi.org/10.1016/j.cognition.2008.09.008

Dong, Z., Dong, Q., & Hao, C. (2010). HowNet and its computation of meaning. COLING 
2010, 23rd International Conference on Computational Linguistics, Demonstrations 
Volume, 23-27 August 2010, Beijing, China.

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye 
movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 
641–655. doi: 10.1016/S0022-5371(81)90220-6.

Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language 
comprehension. Psychophysiology, 44(4), 491–505. https://doi.org/10.1111/j.1469- 
8986.2007.00531.x

Federmeier, K. D., & Kutas, M. (1999). A Rose by Any Other Name: Long-Term Memory 
Structure and Sentence Processing. Journal of Memory and Language, 41(4), 469–495. 
https://doi.org/10.1006/jmla.1999.2660

Fruchter, J., Linzen, T., Westerlund, M., & Marantz, A. (2015). Lexical Preactivation in 
Basic Linguistic Phrases. Journal of Cognitive Neuroscience, 27(10), 1912–1935. 
https://doi.org/10.1162/jocn_a_00822

Grisoni, L., Dreyer, F. R., & Pulvermüller, F. (2016). Somatotopic Semantic Priming and 
Prediction in the Motor System. Cerebral Cortex (New York, NY), 26, 2353–2366. http 
s://api.semanticscholar.org/CorpusID:18635819.

Grisoni, L., Miller, T. M., & Pulvermüller, F. (2017). Neural Correlates of Semantic 
Prediction and Resolution in Sentence Processing. Journal of Neuroscience, 37(18), 
4848–4858. https://doi.org/10.1523/JNEUROSCI.2800-16.2017

Grisoni, L., Tomasello, R., & Pulvermüller, F. (2021). Correlated Brain Indexes of 
Semantic Prediction and Prediction Error: Brain Localization and Category 
Specificity. Cerebral Cortex, 31(3), 1553–1568. https://doi.org/10.1093/cercor/ 
bhaa308

Hagoort, P. (2003). How the brain solves the binding problem for language: A 
neurocomputational model of syntactic processing. NeuroImage, 20(SUPPL. 1), 
S18–S29. https://doi.org/10.1016/J.NEUROIMAGE.2003.09.013

He, T., Boudewyn, M. A., Kiat, J. E., Sagae, K., & Luck, S. J. (2022). Neural correlates of 
word representation vectors in natural language processing models: Evidence from 
representational similarity analysis of event-related brain potentials. 
Psychophysiology, 59(3). https://doi.org/10.1111/psyp.13976

Huang, Z., Feng, C., & Qu, Q. (2023). Predicting coarse-grained semantic features in 
language comprehension: Evidence from ERP representational similarity analysis 
and Chinese classifier. Cerebral Cortex, 33(13), 8312–8320. https://doi.org/ 
10.1093/cercor/bhad116

Hubbard, R. J., & Federmeier, K. D. (2021). Representational Pattern Similarity of 
Electrical Brain Activity Reveals Rapid and Specific Prediction during Language 
Comprehension. Cerebral Cortex, 31(9), 4300–4313. https://doi.org/10.1093/ 
cercor/bhab087

Huettig, F. (2015). Four central questions about prediction in language processing. Brain 
Research, 1626, 118–135. https://doi.org/10.1016/J.BRAINRES.2015.02.014

Kamide, Y., Altmann, G. T. M., & Haywood, S. L. (2003). The time-course of prediction in 
incremental sentence processing: Evidence from anticipatory eye movements. 
Journal of Memory & Language, 49(1), 133–156.

Kim, A. E., & Lai, V. T. (2012). Rapid Interactions between Lexical Semantic and Word 
Form Analysis during Word Recognition in Context: Evidence from ERPs. Journal of 
Cognitive Neuroscience, 24, 1104–1112. https://api.semanticscholar.org/Corpus 
ID:608094.

Kochari, A. R., Lewis, A. G., Schoffelen, J. M., & Schriefers, H. (2021). Semantic and 
syntactic composition of minimal adjective-noun phrases in Dutch: An MEG study. 
Neuropsychologia, 155, Article 107754. https://doi.org/10.1016/J. 
NEUROPSYCHOLOGIA.2021.107754

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language 
comprehension? Language, Cognition and Neuroscience, 31(1), 32–59. https://doi. 
org/10.1080/23273798.2015.1102299

Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in 
language comprehension. Trends in Cognitive Sciences, 4(12), 463–470. https://doi. 
org/10.1016/S1364-6613(00)01560-6

Laszlo, S., & Federmeier, K. D. (2009). A beautiful day in the neighborhood: An event- 
related potential study of lexical relationships and prediction in context. Journal of 
Memory and Language, 61(3), 326–338. https://doi.org/10.1016/j.jml.2009.06.004

Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 Effects of 
Prediction from Association in Single-word Contexts. Journal of Cognitive 
Neuroscience, 25(3), 484–502. https://doi.org/10.1162/jocn_a_00328

J. Li et al.                                                                                                                                                                                                                                         

https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.1162/0898929052880101
http://refhub.elsevier.com/S0093-934X(25)00015-X/h0015
http://refhub.elsevier.com/S0093-934X(25)00015-X/h0015
https://api.semanticscholar.org/CorpusID%3a14295333
https://api.semanticscholar.org/CorpusID%3a14295333
https://doi.org/10.1038/nn1504
https://doi.org/10.1177/0956797610367751
https://doi.org/10.1016/j.cognition.2008.09.008
https://doi.org/10.1111/j.1469-8986.2007.00531.x
https://doi.org/10.1111/j.1469-8986.2007.00531.x
https://doi.org/10.1006/jmla.1999.2660
https://doi.org/10.1162/jocn_a_00822
https://api.semanticscholar.org/CorpusID%3a18635819
https://api.semanticscholar.org/CorpusID%3a18635819
https://doi.org/10.1523/JNEUROSCI.2800-16.2017
https://doi.org/10.1093/cercor/bhaa308
https://doi.org/10.1093/cercor/bhaa308
https://doi.org/10.1016/J.NEUROIMAGE.2003.09.013
https://doi.org/10.1111/psyp.13976
https://doi.org/10.1093/cercor/bhad116
https://doi.org/10.1093/cercor/bhad116
https://doi.org/10.1093/cercor/bhab087
https://doi.org/10.1093/cercor/bhab087
https://doi.org/10.1016/J.BRAINRES.2015.02.014
http://refhub.elsevier.com/S0093-934X(25)00015-X/h0110
http://refhub.elsevier.com/S0093-934X(25)00015-X/h0110
http://refhub.elsevier.com/S0093-934X(25)00015-X/h0110
https://api.semanticscholar.org/CorpusID%3a608094
https://api.semanticscholar.org/CorpusID%3a608094
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2021.107754
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2021.107754
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.1016/S1364-6613(00)01560-6
https://doi.org/10.1016/S1364-6613(00)01560-6
https://doi.org/10.1016/j.jml.2009.06.004
https://doi.org/10.1162/jocn_a_00328


Brain and Language 263 (2025) 105546

9

León-Cabrera, P., Rodríguez-Fornells, A., & Morís, J. (2017). Electrophysiological 
correlates of semantic anticipation during speech comprehension. Neuropsychologia, 
99, 326–334. https://doi.org/10.1016/j.neuropsychologia.2017.02.026

Li, X., Li, X., & Qu, Q. (2022). Predicting phonology in language comprehension: 
Evidence from the visual world eye-tracking task in Mandarin Chinese. Journal of 
Experimental Psychology. Human Perception and Performance, 48(5), 531–547. https:// 
doi.org/10.1037/xhp0000999

Loerts, H., Stowe, L. A., & Schmid, M. S. (2013). Predictability speeds up the re-analysis 
process: An ERP investigation of gender agreement and cloze probability. Journal of 
Neurolinguistics, 26(5), 561–580. https://doi.org/10.1016/J. 
JNEUROLING.2013.03.003

Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A 
theory and review. Psychological Bulletin, 144(10), 1002–1044. https://doi.org/ 
10.1037/BUL0000158

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated 
electroencephalographic independent component classifier, dataset, and website. 
NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026

Pulvermüller, F., & Grisoni, L. (2020). Semantic Prediction in Brain and Mind. Trends in 
Cognitive Sciences, 24(10), 781–784. https://doi.org/10.1016/j.tics.2020.07.002

Taylor, W. L. (1953). “Cloze Procedure”: A New Tool for Measuring Readability. 
Journalism Quarterly, 30(4), 415–433. doi: 10.1177/107769905303000401.

Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). 
Anticipating upcoming words in discourse: Evidence from ERPs and reading times. 
Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(3), 443–467. 
https://doi.org/10.1037/0278-7393.31.3.443

Vissers, C. Th. W. M., Chwilla, D. J., & Kolk, H. H. J. (2006). Monitoring in language 
perception: The effect of misspellings of words in highly constrained sentences. Brain 
Research, 1106(1), 150–163. doi: 10.1016/j.brainres.2006.05.012.

Xun, E., G. Rao, X. Xiao and J. Zang. (2016). “The construction of the BCC Corpus in the 
age of Big Data”. Corpus Linguistics 3(1). 93–109+118.

Wang, L., Brothers, T., Jensen, O., & Kuperberg, G. R. (2023). Dissociating the pre- 
activation of word meaning and form during sentence comprehension: Evidence 
from EEG representational similarity analysis. Psychonomic Bulletin & Review. doi: 
10.3758/s13423-023-02385-0.

Wang, L., Kuperberg, G. R., & Jensen, O. (2018). Specific lexico-semantic predictions are 
associated with unique spatial and temporal patterns of neural activity., ELife, 7. http 
s://api.semanticscholar.org/CorpusID:57761716.

Wang, L., Wlotko, E., Alexander, E., Schoot, L., Kim, M., Warnke, L., & Kuperberg, G. R. 
(2020). Neural Evidence for the Prediction of Animacy Features during Language 
Comprehension: Evidence from MEG and EEG Representational Similarity Analysis. 
Journal of Neuroscience, 40(16), 3278–3291. https://doi.org/10.1523/ 
JNEUROSCI.1733-19.2020

Wu, Z., & Palmer, M. (1994). Verb Semantics and Lexical Selection. In 32nd Annual 
Meeting of the Association for Computational Linguistics (pp. 133–138). https://doi. 
org/10.3115/981732.981751

Zhang, Y., Zhang, J., & Min, B. (2012). Neural dynamics of animacy processing in 
language comprehension: ERP evidence from the interpretation of classifier-noun 
combinations. Brain and Language, 120(3), 321–331. https://doi.org/10.1016/j. 
bandl.2011.10.007

Zhou, X., Jiang, X., Ye, Z., Zhang, Y., Lou, K., & Zhan, W. (2010). Semantic integration 
processes at different levels of syntactic hierarchy during sentence comprehension: 
An ERP study. Neuropsychologia, 48(6), 1551–1562. https://doi.org/10.1016/J. 
NEUROPSYCHOLOGIA.2010.02.001

J. Li et al.                                                                                                                                                                                                                                         

https://doi.org/10.1016/j.neuropsychologia.2017.02.026
https://doi.org/10.1037/xhp0000999
https://doi.org/10.1037/xhp0000999
https://doi.org/10.1016/J.JNEUROLING.2013.03.003
https://doi.org/10.1016/J.JNEUROLING.2013.03.003
https://doi.org/10.1037/BUL0000158
https://doi.org/10.1037/BUL0000158
https://doi.org/10.1016/j.neuroimage.2019.05.026
https://doi.org/10.1016/j.tics.2020.07.002
https://doi.org/10.1037/0278-7393.31.3.443
https://api.semanticscholar.org/CorpusID%3a57761716
https://api.semanticscholar.org/CorpusID%3a57761716
https://doi.org/10.1523/JNEUROSCI.1733-19.2020
https://doi.org/10.1523/JNEUROSCI.1733-19.2020
https://doi.org/10.3115/981732.981751
https://doi.org/10.3115/981732.981751
https://doi.org/10.1016/j.bandl.2011.10.007
https://doi.org/10.1016/j.bandl.2011.10.007
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.02.001
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.02.001

	ERP representational similarity analysis reveals the prediction of semantic features in minimal phrasal contexts
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Materials and design
	2.3 Matching semantic similarity and lexical properties between animate- vs. inanimate- constraining adjectives
	2.4 Quantifying semantic similarity and lexical properties between animate vs. inanimate nouns
	2.5 Procedure
	2.6 EEG recordings and preprocessing
	2.7 EEG amplitude analyses
	2.8 Representational similarity analysis

	3 Results11In the present study, we collected response latencies, but they are not a primary focus of the analysis. In the  ...
	3.1 N400 effect of adjective-noun congruency
	3.2 Representation similarity analysis

	4 Discussion
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


